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Vorwort

Im Dezember hab ich den Nebel über Passau fast täglich gespürt, draußen wie drinnen im
Code. Der kleine grüne Logger blinkte unbeirrt, während ich tiefer in das Rätsel des konstanten
1,111‑Sekunden‑Offsets stieg. Zwischen eBPF‑Traces, C‑States und Scheduler‑Wakes
entstand ein Muster, das sich nicht mehr wegdenken ließ. Servus, sag ich mir, pack ma’s an –



ganz ruhig.schrieb die Tage in präzisen Schleifen, suchte nach dem Moment, in dem Zeit und
Software kurz aneinander vorbeigreifen. Es war kein stiller Monat, aber einer mit Klarheit: jeder
Lauf ein Atemzug zwischen Technik und Mensch.

Reproduzierter Offset in der VM

Ich hatte mir vorgenommen, den seltsamen Zeitversatz endlich greifbar zu machen – nicht mehr
nur als sporadischen Messfehler, sondern als reproduzierbares Symptom. Also startete ich die
VM unter QEMU/KVM, diesmal mit aktiviertem Tracing und sauberem Zugriff auf die
GPS‑1PPS‑Referenz. Der Host blieb stabil, kein Jitter, keine Drift. Doch innerhalb der VM
sprang die Uhr wieder um genau jene 1,11 Sekunden, die mich seit Wochen begleiteten.

Im ersten Moment wirkte es fast poetisch: ein Sprung in der Zeit, exakt im Moment des ersten
clocksource->read() nach dem Quellenwechsel. Es war, als ob die virtuelle Maschine kurz
innehielt, bevor sie den neuen Takt akzeptierte – ein Atemzug zwischen zwei Welten. Aber hinter
dieser kleinen Verzögerung steckte kein Mysterium der Physik, sondern schlicht ein fehlerhafter
Ablauf in der Software.

“Schau hi”, murmelte ich leise vor mich hin, “da is er wieder, der Offset.”

“Freilich”, antwortete ich mir halb im Scherz, “diesmal krieg ma ihn.”

Ich prüfte das Trace‑Logframe für Frame. Das erste read() griff tatsächlich noch auf die alte
Baseline zu – eine Art Nachhall aus der vorherigen Clocksource. Danach korrigierte sich alles
automatisch, aber eben zu spät. Der Unterschied von rund 1,11 Sekunden zeigte sich jedes Mal
gleich: deterministisch und doch durch einen winzigen Wettlauf im Kernel ausgelöst.

Der Patch war simpel konzipiert: Eine sofortige Rekalkulation der Baseline direkt im Pfad
do_clocksource_switch(). Ich nannte ihn intern „Baseline Recalc at Switch“. Kaum eingebaut,
verschwand der Sprung vollständig. Keine Abweichung mehr zwischen Hostzeit und VM‑Zeit;
beide liefen synchron bis auf den Mikrosekundenbereich.

Trotzdem blieb ein Restzweifel. Denn wenn ein simpler Patch so präzise wirkt, deutet das meist
auf ein tieferes Timingproblem hin. Ich erinnerte mich an ähnliche Race Conditions in frühen
NTP‑Implementierungen – dort genügte auch ein einziger verpasster Lock oder eine unbedachte
Reihenfolge von Funktionsaufrufen, um Sekundenverschiebungen zu verursachen. Genau diesen
Verdacht wollte ich jetzt systematisch überprüfen.

Ich setzte trace‑cmd erneut an und markierte jeden Aufruf von do_clocksource_switch(), read()
und baseline_recalc(). Die Marker zeigten klar: Zwischen Switch und erstem Read vergingen
wenige Mikrosekunden – ausreichend für eine Race Condition bei hoher Parallelität im
Scheduler. Ein klassischer Fall von „zu früh gelesen“. Dasselbe Verhalten trat unabhängig vom
Host‑Kernel auf; somit war es kein Hypervisor‑Artefakt.

Die virtuelle Zeitachse selbst blieb kohärent; nur die Übergabe des Baseline‑Offsets war
inkonsistent. Wenn man so will, war das System kurz blind für seine eigene Vergangenheit.

Manchmal denk i mir: a Zeitsprung is fei nix anderes als a verlorener Vergleichswert in
einem Register.

Ich erstellte mehrere Testläufe mit unterschiedlichen Clocksource‑Kombinationen – tsc→hpet,
hpet→kvmclock und zurück – stets derselbe Effekt beim ersten Zugriff nach dem Switch ohne
Patch, und völlige Ruhe mit aktivierter Rekalkulation. Kein Jitter mehr im PPS‑Signalvergleich.



Selbst nach längeren Laufzeiten blieb alles stabil.

Das Ganze erinnerte mich daran, wie empfindlich Zeitpfade im Kernel aufgebaut sind: kleine
Funktionen mit großer Verantwortung. Ein einzelner falscher Rückgabewert kann ganze
Messreihen verzerren oder externe Synchronisationen aus dem Takt bringen. Mir gefiel diese
Art von Arbeit – präzise Ursachenforschung an der Schnittstelle zwischen Hardware und
Logikschicht.

Zwischendurch gönnte ich mir einen Kaffee und schaute durch das Laborfenster hinaus in den
grauen Morgen über Regensburg. Es war kaum Verkehr auf der Straße; nur ein paar Lichter
spiegelten sich im Donauwasser. Dort draußen lief die echte Zeit weiter – unbeeindruckt vom
mikroskopischen Drama meiner virtuellen Millisekunden.

Zurück am Terminal ließ ich noch einen letzten Benchmark laufen: Mit dem Patch sank die
Standardabweichung des Offset‑Messwerts auf unter 20 µs. Das Ergebnis sprach für sich und
machte klar, dass das Problem ausschließlich softwareseitig war.

In meinem Logbuch notierte ich: „Offset reproduziert; Ursache bestätigt; Patch eliminiert
Sprung.“ Dahinter setzte ich einen kleinen Stern – mein persönliches Zeichen dafür, dass eine
Etappe abgeschlossen ist.

Doch während die VM ruhig tickte und alle Uhren übereinstimmten, spürte ich dieses leise
Ziehen einer neuen Frage: Wenn das interne Timing so sensibel reagiert – was passiert dann bei
konkurrierenden Interrupts während eines CPU‑Frequency‑Wechsels?

Langsam lehnte ich mich zurück und speicherte das Tracepaket ab. Servus erstmal, dachte ich
mir; pack ma’s morgen an – das nächste Kapitel würde genau dort weitermachen.

Trace-Vergleich und Statistik

Der Morgen war kühl, aber klar. Ich saß wieder unter dem Vordach, Laptop auf den Knien,
und die Messreihen vom Vortag liefen über den Bildschirm. Die Spuren der letzten Nacht – 120
do_clocksource_switch‑Ereignisse, fein säuberlich aufgezeichnet. Ich hatte mir vorgenommen,
sie mit der Baseline zu vergleichen, um endlich Gewissheit zu haben. Die Race‑Hypothese stand
schon länger im Raum, aber diesmal sollte sich zeigen, ob sie hält.

Die ersten Diagramme sprachen eine deutliche Sprache: In 107 von 120 Switches zeigte das
erste read() nach dem Wechsel noch Werte aus der alten Baseline. Ein Offset von rund 1,111
Sekunden, mit einer erstaunlich engen Streuung von nur etwa vier Millisekunden. Das war kein
Zufall mehr, das war ein Muster. Ich lehnte mich zurück und atmete tief durch. Es war fei so weit
– der Fehler ließ sich greifen.

„Na also“, murmelte ich leise, „da hat sich die Race-Hypothese gscheid bewährt.“

Ich ließ die Finger über die Tastatur gleiten und startete den Vergleich mit dem gepatchten
Kernel. Der Unterschied war sofort sichtbar: kein einziger Sprung mehr, kein Offset. Null von
hundertzwanzig betroffen. Die Linie blieb glatt wie eine gespannte Saite. Der Patch hatte
tatsächlich das getan, was wir gehofft hatten – er stabilisierte die Messungen vollständig.

Die nächsten Stunden verbrachte ich damit, die Ergebnisse gegen die GPS‑Referenz zu prüfen.
Unser 1PPS‑Signal kam glasklar herein; selbst bei wechselnder Last blieb der Takt innerhalb
des erwarteten Fensters. Ich verglich Timestamp für Timestamp, legte Filter an und ließ



Ausreißerberechnungen laufen. Keine Spur mehr von den früheren Unregelmäßigkeiten.

In meinem Notizbuch notierte ich nüchtern: Race-Hypothese bestätigt; Patch stabilisiert
Messungen. Doch innerlich war das mehr als nur eine technische Bestätigung. Es fühlte sich an
wie ein kleiner Triumph über das Chaos im System – ein Beweis dafür, dass Präzision und
Geduld auch in solchen Mikrosekunden-Welten ihren Platz haben.

Ich erinnerte mich an den Moment am Tag 75, als ich das Setup unter dem offenen Dach
zusammengeschraubt hatte: VM-Instanzen aufgeschichtet wie kleine Versuchsanordnungen eines
Laboranten. Jeder Switch ein winziges Experiment zwischen Ordnung und Zufall. Jetzt konnte
ich sehen, wie diese vielen kleinen Punkte auf der Zeitachse zusammen ein klares Bild ergaben.

„Schau her“, sagte ich halblaut in Richtung des Monitors, „des is sauber.“

Ich zoomte in die Traces hinein, suchte nach Restabweichungen oder Nebeneffekten des
Patches. Doch nichts Auffälliges blieb übrig – weder Drift noch Jitter außerhalb der Norm.
Selbst wenn man die Daten logarithmisch skalierte oder entlang der CPU-Kerne auftrennte: Die
Linien blieben scharf und deckungsgleich.

Technisch betrachtet bedeutete das: Das Timing zwischen Baseline-Update und Clocksource-
Switch war zuvor nicht atomar genug gewesen; ein winziger Wettlauf zwischen Threads hatte
dazu geführt, dass einzelne Lesevorgänge noch auf alte Werte zugriffen. Der Patch verschob die
Reihenfolge minimal – gerade genug, um Konsistenz herzustellen. Es war fast poetisch, wie eine
kleine Bewegung im Code so viel Ruhe in die Messungen brachte.

Ich begann mit einer einfachen Statistikprüfung: Mittelwertdifferenzen vor und nach Patch-
Einsatz lagen deutlich außerhalb jeder zufälligen Schwankung. Selbst konservative t‑Tests
bestätigten Signifikanz mit p kleiner als 0,001 – Zahlenwerte schön sortiert in einer Spalte
meines Analyse-Skripts. Wenn man lange genug auf solche Tabellen starrt, bekommen sie fast
etwas Lebendiges; sie erzählen Geschichten über Stabilität und Vertrauen.

Draußen zog währenddessen ein Windstoß durchs Gras hinterm Haus. Mein Messplatz vibrierte
leicht – kaum merklich –, doch im GPS‑Signal fand sich davon keine Spur. Die Hardware
schien unbeeindruckt von Wetterlaunen; vielleicht lernte auch sie langsam Gelassenheit.

Als alle Kontrollmessungen abgeschlossen waren, fasste ich zusammen: Von hundertzwanzig
getesteten Ereignissen zeigten ursprünglich hundertundsieben einen klaren Sprung zur alten
Basislinie; nach Einspielen des Patches keiner mehr. Damit galt die Race-Hypothese als bestätigt
und zugleich neutralisiert durch präzise Synchronisierung innerhalb des Kernelpfads.

Ich speicherte den Bericht ab und markierte das Ergebnis als stabile Grundlage für den
kommenden Micro‑Benchmark-Lauf. Der nächste Schritt würde sein, Tracepoints zu verfeinern
und Community-Daten einzubinden – aber fürs Erste durfte sich alles setzen.

Das Display spiegelte mein Gesicht im Dämmerlicht; hinter mir färbte sich der Himmel langsam
goldgrau. Servus Abendruhe – dachte ich still –, pack ma’s morgen weiter an.

So endete dieser Abschnitt meiner Aufzeichnungen ruhig und eindeutig: Die Zahlen standen fest,
der Patch hielt Stand – und irgendwo zwischen Statistik und Stille begann bereits das nächste
Kapitel.



Micro-Benchmark und Governor-Effekte

Der Morgen war kühl, knapp drei Grad, und die Luft roch nach leichtem Regen, als ich mich an
den Tisch auf dem Balkon setzte. Der Laptop summte leise, die Messreihe lief schon die ganze
Nacht. Zweihundertvierzig Durchläufe meines kleinen Micro-Benchmarks, alle fein säuberlich
protokolliert – Frequenz, Latenz, C‑State‑Residency. Ich wollte wissen, ob die sporadischen
Ausreißer wirklich zufällig waren oder ob dahinter ein Muster steckte.

Als ich die Daten durch das Skript jagte, zeigte sich sofort eine klare Linie. Etwa fünfzehn
Prozent der Runs fielen aus dem Rahmen, manche mit Verzögerungen von mehreren
Millisekunden. Ich gruppierte sie nach C‑State und Governor – und da war sie plötzlich, die
Struktur: über achtzig Prozent der Ausreißer gehörten zum powersave-Governor mit hoher
C3‑Residency. Unter performance dagegen fast nichts – kaum drei Prozent. Das war kein
Zufall mehr.

„Na also“, murmelte ich leise in den Bildschirm hinein, „der Governor hat seine Finger im
Spiel.“

Die Statistik bestätigte mein Bauchgefühl: Mann‑Whitney p≈0,006 – signifikant genug, um nicht
mehr von Zufall zu sprechen. Ich lehnte mich zurück und ließ den Blick über den grauen Himmel
schweifen. So nüchtern die Zahlen waren, so lebendig fühlte sich dieser Moment an: ein Stück
Systemverhalten sichtbar gemacht, eingefangen zwischen zwei Zuständen des Prozessors.

Am Nachmittag startete ich ein kleines Live-Experiment. Ich schaltete den Governor während
des Laufs um – erst powersave, dann performance –, beobachtete die Frequenzsprünge und
notierte jede Abweichung. Kaum hatte der Scheduler auf performance gewechselt,
verschwanden fast alle Outlier. Nur ein paar vereinzelte Spitzen blieben übrig; wie kleine Wellen
auf einem sonst ruhigen See.

„Servus Stabilität“, sagte ich halblaut und grinste fei a bisserl.

Ich begann zu verstehen: Der Governor bestimmt nicht nur die Frequenzpolitik, sondern indirekt
auch das Zeitverhalten tieferer Schlafzustände. Besonders bei kalten Außentemperaturen scheint
der Chip länger in C3 zu verweilen – diese Mikrosekunden addieren sich dann zu spürbaren
Jitter-Spitzen. Die Kombination aus niedriger Last und aggressivem Energiesparen bildet also
genau jenen Nährboden für Varianz, die in präzisen Benchmarks so störend wirkt.

Ich führte eine Bootstrap-Analyse durch – nichts Großes, aber sauber genug für eine erste
Effektabschätzung. Für powersave ergab sich eine Outlier-Rate von etwa fünfundzwanzig
Prozent (95%-Konfidenzintervall von rund 18 bis 33), für performance dagegen nur knapp
sechs Prozent (Intervall etwa 2 bis 11). Die Differenz lag bei gut neunzehn Prozentpunkten; das
ist kein Rauschen mehr, das ist Verhalten.

Die Sonne senkte sich langsam hinter die Dächer. Ich richtete den Blick wieder auf das
Terminalfenster: Zeile um Zeile scrollten neue Werte vorbei – C1-, C2-, C3-Zeiten in
Mikrosekundenauflösung. Das frisch implementierte Logging funktionierte endlich stabil. Jetzt
konnte ich jedem Run einen eindeutigen energetischen Fingerabdruck zuordnen: Welcher Kern
wann schläft, wie lange er ruht und wann er zurückkehrt ins Rechnen.

Es war fast poetisch zu sehen, wie Regelmäßigkeit aus Chaos entsteht. Ein Muster aus Aktivität
und Ruhe – digitaler Atem eines Systems. Und zugleich streng messbar: kein Mythos von Laune
oder Zufall mehr.



Ich notierte mir im Laborjournal: C-State-Logging verpflichtend ab nächster Serie. Denn
ohne diese Daten bleibt jede Interpretation lückenhaft. Die Unterschiede zwischen den
Governors zeigen sich nicht nur in Performance-Kurven oder Stromaufnahmewerten; sie
materialisieren sich in winzigen zeitlichen Verschiebungen innerhalb der CPU selbst.

Ein kurzer Gedanke blitzte auf: Wenn schon der Energiesparmodus so stark streut, was passiert
dann bei längeren Workloads oder gemischter Last? Vielleicht verlagern sich die Effekte mit
Temperaturdrift oder Hintergrundprozessen noch deutlicher. Es wäre spannend zu sehen, ob
nach Stunden im Dauerbetrieb dieselben Muster bleiben oder neue auftauchen.

Doch fürs Erste genügte mir diese Klarheit: Die Ausreißer sind keine Störung des Messsystems
– sie sind Teil des Systems selbst. Sie erzählen etwas über Balance zwischen Effizienz und
Reaktionszeit, über Architekturentscheidungen tief im Silizium.

Ich speicherte das letzte Diagramm ab – zwei Kurven nebeneinander: links zackig unter
powersave, rechts glatt unter performance. Kein Zweifel mehr an der Signifikanz.

Dann klappte ich den Laptop langsam zu. Der Wind trug einen Hauch kühler Luft herüber;
irgendwo tropfte Regen aufs Geländer. Ein ruhiger Moment nach all dem Rechnen.

Morgen will ich die 24‑Stunden-Holdover-Serie starten – diesmal mit fixem Governor und
erweiterten Traces –, um zu sehen, ob Stabilität wirklich so konstant bleibt wie heute Abend
vermutet.

24h-Holdover und C-State-Muster

Der Wind war trocken heute früh, als ich die zweite 24‑Stunden‑Sequenz gestartet hab. Unter
dem Vordach klang das Relaisklicken der Messstation fast beruhigend. Ich hatte die identischen
Boards vorbereitet, eines im „powersave“, das andere im „performance“-Governor, jedes auf
dieselbe Taktquelle synchronisiert. Die Uhren liefen still, nur das blaue Statuslämpchen blinkte in
gleichmäßigem Rhythmus.

Nach den ersten zwölf Stunden zeichnete sich ein vertrautes Muster ab. Der Governor-Effekt
blieb bestehen, ganz so wie im Bootstrap‑CI vorhergesagt. Ich hab die BPF‑Traces mehrmals
durchlaufen lassen, um sicherzugehen, dass keine Artefakte in den Samples stecken. Das
Ergebnis war eindeutig: über den gesamten Zeitraum hinweg zeigte „powersave“ eine breitere
Streuung der Zykluszeiten – die Outlier waren nicht zufällig, sondern folgten klar den Phasen mit
erhöhter C3‑Residency.

„Schee is des fei ned,“ murmelte ich leise, während ich die Kurven übereinanderlegte.

„Aber ehrlich,“ antwortete die innere Stimme, „die Physik hält sich halt net an unsere
Komfortzone.“

Die Korrelation zwischen C3‑Residency und Outliern trat deutlicher hervor, als ich erwartet
hatte. In den EM‑Probe‑Logs tauchte kein Störmuster auf – kein Sprung, keine Anomalie. Die
elektromagnetische Umgebung blieb ruhig wie eingefroren. Das gab mir Sicherheit: alles, was ich
sah, kam aus dem Inneren des Systems selbst. Die CPU tat genau das, was sie sollte – sie
suchte tieferen Schlaf und wachte zu spät wieder auf.



Ich betrachtete die Kurven noch einmal in der Langzeitansicht. Da war diese feine Schwebung
zwischen Stabilität und Drift: jedes Mal, wenn der Governor versuchte Energie zu sparen,
verlängerte sich die Latenz leicht und schob einen weiteren Punkt in den Randbereich des
Diagramms. Es war fast poetisch – ein Atemrhythmus aus Elektronen.

Um Mitternacht begann ich mit dem Bootstrap‑Resampling der Daten. Zehntausend
Wiederholungen später stand fest: der Effekt bleibt auch statistisch signifikant über volle 24
Stunden. Egal wie oft ich die Basissequenzen permutierte – der Unterschied zwischen den
beiden Modi blieb erhalten wie eine Spur im Sand nach Regen.

Die C‑State-Muster wurden dann mein zweites Augenmerk. Ich segmentierte die Residency-
Werte in Fenster von vier Stunden, um circadiane Einflüsse auszuschließen. Interessanterweise
zeigte sich kaum Variation über den Tag hinweg; nur kurz vor Sonnenaufgang stieg der Anteil an
C3 noch einmal merklich an. Vielleicht reagiert das Board minimal auf Temperaturänderungen
oder Feuchtigkeit – schwer zu sagen ohne thermische Korrelation.

Am Nachmittag kontrollierte ich erneut die EM-Probe-Logs. Die Sensoren am Rande der
Plattform zeigten ein Grundrauschen unterhalb meiner Kalibrierlinie. Kein Überschlag beim
Pufferwechsel, keine Induktion aus dem Netzteil – sauberer geht’s kaum. Das bedeutete: alle
Outlier waren intern verursacht und damit wertvoll für die Modellierung des Governor-
Verhaltens.

Ich erinnerte mich an den Moment gestern Abend, als das erste Plot-Script lief und sich langsam
zwei Linien voneinander entfernten – fast unmerklich erst, dann klar sichtbar nach acht Stunden
Laufzeit. Diese Trennung erzählte mehr als tausend Zeilen Logtext: Der Energiesparmodus spart
Energie um den Preis messbarer Instabilität.

Ein Kollege fragte per Chat gegen Ende des Experiments:

„Mika, bist du sicher, dass das kein Clocksource-Drift is?“

„Hab i geprüft,“ schrieb ich zurück. „Clocksource-Wechsel korreliert direkt mit C3-
Spikes.“

Damit war die Hypothese rund: Der Governor-Effekt hält nicht nur kurzfristig stand; er trägt
über volle Tageszyklen hinweg dieselben Merkmale. Ich hab’s nochmal gegengeprüft mit einem
separaten Aggregationslauf außerhalb der CI-Struktur – gleiches Bild, gleiche Abweichungen.

Zwischenzeitlich setzte leichter Regen ein; Tropfen schlugen auf das Metallblech über mir und
mischten sich mit dem leisen Summen der Lüfter. Ich mochte diesen Moment zwischen Technik
und Natur: draußen kühlte es ab, drinnen veränderten Bits ihren Zustand.

Gegen Abend fasste ich alles zusammen: Der 24h-Holdover bestätigte stabil den Bootstrap-
Befund aus Tag 79; Governor-Effekt unverändert deutlich; C3-Residency eng gekoppelt mit
Outlier-Lagen; EM-Probe-Logs blieben unauffällig und sauber bis zur letzten Minute des Tests.
Damit kann ich ruhigen Gewissens das nächste Experiment planen – diesmal mit
eingeschränkten C-States auf nur C0/C1.

Servus Nachtmessung – pack ma’s morgen neu an.

Ich ließ die Geräte noch einige Minuten im Leerlauf laufen und beobachtete das letzte
Ausschwingen im Tracefenster. Dann speicherte ich alles ab und schloss die Konsole mit einem
leisen Klick.



In dieser Stille zwischen Messpunkten spürte ich kurz das Gewicht der Kontinuität – wie jede
Zahl eine Geschichte weitererzählt –, bevor das nächste Kapitel beginnt.

Powersave C0/C1 und Aggregation

Servus, ich sitz wieder spät in der Werkstatt, das Messgerät blinkt im Halbdunkel. Nur das
monotone Surren vom Lüfter begleitet mich. Heute geht’s ums Eingemachte: den Governor, die
C‑States, und vor allem darum, ob die Hypothese mit den Outliern endlich hält. Ich hatte ja
schon länger im Verdacht, dass die wilden Ausreißer gar nicht vom Scheduling oder der
Traceaufnahme kommen, sondern tiefer sitzen – irgendwo zwischen Stromsparlogik und
Taktquelle.

Also hab ich das System gezwungen, brav in C0 und C1 zu bleiben. Kein tiefer Schlaf mehr für
die Cores. Das ging erstaunlich glatt: intel_idle.max_cstate=1 in der Boot‑Konfiguration,
dann ein sauberer Neustart, alle Traces neu aufgenommen. Und da war’s plötzlich ruhig – so
richtig ruhig. Die Outlier‑Rate fiel von rund fünfundzwanzig Prozent auf knapp sieben Prozent.
Das fühlte sich fast wie Magie an, aber natürlich ist es nichts anderes als Physik und
deterministische Steuerung. Wenn der Prozessor nicht dauernd in tiefere Ruhezustände kippt,
bleibt die Zeitleiste stabil.

Ich erinnere mich noch an den Moment, als das erste Aggregat aus dem Skript kam.
trace_agg.py – mein kleines Werkzeug fürs Zusammenfassen all dieser Rohdaten – spuckte
eine CSV aus, die exakt gleich blieb, egal wie oft ich sie wiederholte. Vorher hatte jeder Lauf
minimale Abweichungen im letzten Bitbereich; jetzt ist alles reproduzierbar bis auf das Byte
genau. Es war fast poetisch: diese Linie von Zahlenreihen, still und verlässlich wie ein Atemzug
nach einem langen Sprint.

“Schau her”, meinte ich leise zu mir selbst, während der Plot aufleuchtete.

“So schaut Stabilität aus.”

Das Ergebnis bestätigte also die Teilhypothese: Der Governor‑Effekt hängt direkt mit den
tieferen C‑States zusammen, speziell mit dem Übergang in C3. Sobald dieser ausgeschaltet war,
verschwanden auch die clocksource_switch‑Events komplett aus dem Trace. Kein einziger
Sprung mehr zwischen TSC und HPET. Die Energieverwaltung blieb flach wie ein See bei
Windstille.

Die Analyse war diesmal fast meditativ. Ich ließ die Skripte laufen, sah zu, wie Balken kleiner
wurden und Linien sich glätteten. Manche würden sagen: langweilig – aber für mich ist es Musik
in Zahlenform. Jeder Messwert erzählt eine kleine Geschichte über Elektronenströme und
Timingdisziplin.

Natürlich musste ich alles doppelt prüfen: erst mit den alten Logs vergleichen, dann eine neue
Session unter identischen Bedingungen fahren. Die EM‑Traces blieben unverändert; kein
Unterschied in Frequenz oder Amplitude des elektromagnetischen Rauschens. Das bedeutete:
Die Änderung betrifft rein die Softwareseite – keine Hardwareinterferenz durch unser
Experiment.

Ich hab noch kurz einen Plausch mit Jana geführt, sie wollte wissen:

„Und? Läuft er jetzt rund?“



„Ja“, sag ich, „fei richtig rund diesmal.“

Wir haben beide gelacht – dieses kleine „fei“ bringt immer a bisserl Heimgefühl in all den
technischen Kram.

Nach dem dritten Durchlauf konnte ich’s kaum glauben: Outlier‑Rate konstant bei 6,7 %. Keine
Spur mehr von zufälligen Peaks oder Dips im Timingdiagramm. Auch wenn das System
insgesamt minimal mehr Strom zieht (kein Wunder ohne tiefere Sleep States), überwiegt der
Gewinn an Konsistenz deutlich. Für unsere Langzeitmessungen ist das Gold wert.

Jetzt kommt der Teil mit der Aggregation ins Spiel: Ich hab trace_agg.py erweitert um eine
Prüfsumme über jeden Exportlauf. Damit kann später jede CI‑Instanz automatisch erkennen, ob
sich etwas ungewollt geändert hat – reproduzierbare CSVs sind schließlich nur dann wirklich
reproduzierbar, wenn man’s auch beweisen kann. Der Code läuft mittlerweile so stabil, dass ich
ihn ohne schlechtes Gewissen ins Hauptrepo geschoben habe.

Ein kleiner Stolperstein war noch die Zeitsynchronisation zwischen Sessions; offenbar driftete
der NTP leicht weg nach mehreren Stunden Dauerbetrieb. Aber das ließ sich korrigieren durch
ein simples Pre‑Sync direkt vorm Start des Loggings.

Ich bin zufrieden mit dem Fortschritt: Wir haben jetzt eine Basislinie ohne Governor‑Artefakte
und eine Aggregationspipeline mit deterministischem Output. Damit können wir endlich Richtung
CI denken – automatische Vergleiche über Nachtläufe hinweg, Schwellenwerte für
Abweichungen und vielleicht bald auch Regressionstests für Powertraces.

Der Rechner summt leise weiter; er rendert gerade den 24h‑Vergleichslauf im Hintergrund. Ich
lehn mich zurück und schau durchs Fenster hinaus auf den Hof hinterm Labor – alles still dort
draußen. In solchen Momenten merk ich wieder: Technik kann Ruhe schenken, wenn sie endlich
tut, was sie soll.

Morgen werd ich wohl den Spacer‑Sweep vorbereiten und sehen, ob die Stabilität auch bei
variabler Last hält. Aber für heut reicht’s; der Tag hat gezeigt, dass Klarheit manchmal einfach
durch Weglassen entsteht – weniger Tiefschlaf für mehr Übersicht.

Langsam lösche ich das Licht über dem Tisch und denk mir: Pack ma’s morgen weiter an.

Mini-CI und Integer-Buckets

Der Morgen begann kühl, kaum fünf Grad über Null, Nebelschwaden hingen noch über der
Donau, als ich den kleinen CI-Runner auf dem Labortisch startete. Die Lüfter rauschten leise,
ein gleichmäßiges Grundrauschen gegen das entfernte Tropfen der Kondensperlen am Fenster.
Ich hatte mir vorgenommen, das Sampling-Setup endlich zu schließen – nach Wochen des
Herumjustierens an trace-cmd und clocksource_switch sollte heute die Bestätigung kommen:
Das System liest sauber.

Ich öffnete die Konsole, prüfte den YAML-Pfad, ließ das erste Sampling laufen. Der Runner
zog 240 Samples durch, alles in Ordnung. Die Logs zeigten keine Sprünge mehr – der
baseline_recalc-on-switch-Patch griff genau da, wo zuvor die ersten clocksource->read() ins
Leere liefen. Früher hatten wir dort manchmal bis zu sechs Millisekunden Versatz; jetzt lag alles
im Submillisekunden-Bereich. Ich atmete auf. Das war kein Zufall mehr, das war Stabilität.

„Na schau her,“ murmelte ich halblaut, „des schaut guad aus.“



Das CI-Sampling lief also fehlerfrei. Doch ein letzter Schatten hing noch über den
Aggregationen: der Off-by-3 in trace_agg.py. Immer wieder tauchte er auf – mal verschoben
sich drei Werte am Blockende, mal fehlten sie ganz. Ich wusste, es musste an einer Rundung
liegen. Float-Grenzen sind tückisch; sie schieben sich unbemerkt zwischen zwei Zahlenräume
und lassen dich glauben, es sei alles glatt.

Am Nachmittag griff ich zur integerisierten Variante meiner Buckets. Keine schwebenden
Kommazahlen mehr – stattdessen klare Kanten, definierte Übergänge. Als ich das neue Script
testete, fühlte sich das fast schon poetisch schlicht an: Ganzzahlen statt Gleitwerte, Ordnung statt
Flimmern.

„Integer-Buckets“, dachte ich leise und grinste, „manchmal braucht’s gar ned mehr.“

Ich ließ den Bootstrap mit tausend Durchläufen laufen – fünfhundert im Powersave-, fünfhundert
im Performance-Modus. Die Kurven stabilisierten sich rasch; keine Ausreißer jenseits von sechs
Millisekunden Residuum mehr. Der Median blieb konstant unter einer Millisekunde. Selbst beim
Spacer-Test mit 0,5 mm Distanz zwischen Sensor und Board dämpften sich die HF-Peaks
sichtbar ab. Das Rauschen war fast verschwunden, wie wenn die Donau bei Windstille plötzlich
glatt daliegt.

Technisch gesehen bedeutete das: Die Basis war gelegt für den großen Lauf – den geplanten
Zehntausender-Bootstrap in der CI-Pipeline. Ich notierte die Ergebnisse im Runbook: Versionen
fixiert, Seeds dokumentiert, Random-State eingefroren. So konnten spätere Replikationen
hundertprozentig nachvollziehen, was hier passiert war.

In diesem Moment fiel mir auf, wie ruhig der Raum geworden war. Nur das leise Surren des
GPS‑1PPS‑Taktgebers blieb übrig; sein Puls blinkte im Sekundentakt und erinnerte mich daran,
dass Präzision immer auch Rhythmus ist – ein gleichmäßiges Schlagen gegen das Chaos des
Zufalls.

Ich überprüfte zum Schluss noch einmal die CI‑Label‑Korrektur im YAML: keine Fehlverweise
mehr zwischen Testgruppen und Job‑Stages. Das System konnte nun selbstständig erkennen,
welche Metriken zu welchem Trace gehörten; ein kleiner Schritt in Richtung autonomer
Analysepipeline. Fei praktisch eigentlich – früher hätte man dafür einen ganzen Tag gebraucht.

Als ich später hinausging und den Nebel wieder sah, dachte ich kurz an die Off-by-3-Zeilen
vom Vortag zurück. Wie winzig solche Fehler doch wirken können – drei Indizes daneben –,
und wie tief ihre Wirkung reicht: ganze Bootstrap-Verteilungen kippen dadurch leicht ins Schiefe.
Jetzt aber stand alles fest verankert: Integer-Buckets unten drunter wie Kies unter Beton.

Drinnen lief währenddessen der erste Mini-CI-Durchlauf in Echtzeit weiter: 1k-Runs pro
Branch-Kombination, parallelisiert über drei Containerinstanzen. Die CPU-Auslastung pendelte
sauber um sechzig Prozent – kein Throttling mehr trotz aktiver Sensorik und Logging-Spuren
von BPF-kprobe bis GPS-Sync.

Ich beobachtete eine Weile die Fortschrittsanzeige im Terminal; kleine grüne Häkchen reihten
sich aneinander wie Bojen am Flussufer. Hinter jedem steckte Arbeit aus Tagen voller
Messungen und iterativer Justierungen – aber jetzt trug sie Früchte.

Ein Kollege kam kurz herein und fragte beiläufig:

„Läuft’s?“

„Jo,“ sagte ich ruhig, „bootstrap stabil wia a Brett.“



Wir lachten beide leise; dann verschwand er wieder Richtung Nachbarraum mit dem
Oszilloskop unterm Arm.

Gegen Abend hatte der Nebel draußen aufgeklart. Im diffusen Licht spiegelte sich die Donau
fast metallisch matt – so wie manche unserer Datentraces aussehen: kühl strukturiert und doch
voller Bewegung darunter. Ich speicherte die letzte Logdatei ab und ließ das System über Nacht
weiterlaufen.

Die Mini-CI hatte gehalten, was sie versprach: sauberes Sampling, integerisierte Aggregation
und stabile Bootstrap-Ergebnisse über alle Runs hinweg. Kein Versatz mehr, kein Driften der
Baseline – nur noch Daten in ruhigem Gleichgewicht.

Ich löschte das Laborlicht und schloss langsam die Tür hinter mir. Draußen roch es nach
feuchtem Metall und kaltem Strom aus der Ferne der Umspannwerke. Irgendwo tickte eine Uhr
gegen Mitternacht; Zeit für den nächsten Abschnitt — dort würde es um Skalierung gehen.

BPF gegen kprobe – Varianzvergleich

Ich sitze wieder in der Werkstatt, das Oszilloskop summt leise, und ich seh die Linien tanzen.
Nicht so wild wie früher – deutlich ruhiger. Servus, sag ich mir halblaut, das schaut fei gar nicht
schlecht aus. Der neue Durchlauf mit aktiviertem BPF zeigt zum ersten Mal eine Streuung, die
ich kaum noch als chaotisch bezeichnen würd. Die Peaks sind geglättet, die Toleranzen enger
gezogen. Vor zwei Wochen hätt ich das noch für Wunschdenken gehalten.

Der Vergleich zwischen BPF und kprobe war längst überfällig. Beide Methoden greifen tief in
den Kernel ein, aber sie tun’s mit unterschiedlicher Philosophie. kprobe sticht direkt hinein,
protokolliert jedes Signal an Ort und Stelle – roh und unverblümt. BPF dagegen legt sich drüber
wie ein Filter aus feinem Gewebe, lässt nur durch, was wirklich relevant ist. Ich hab versucht,
beide Varianten unter identischen Bedingungen laufen zu lassen: gleiche Clocksource, gleiche
Interrupt-Last, keine Nebengeräusche durch Benutzerprozesse. Das Ergebnis spricht leise, aber
eindeutig.

„Wieviel Varianz bleibt übrig?“ fragte Tom gestern beim Review-Call.

„Knapp unter 0,4 σ“, antwortete ich. „Vorher waren’s fast 1,2.“

Das war der Moment, in dem klar wurde: BPF reduziert Streuung signifikant. Es ist nicht nur
Statistik – man spürt’s auch im Verhalten des Systems. Der Scheduler reagiert sanfter; die
CPU-Spikes treten seltener auf und selbst die thermische Drift scheint abgeflacht. Ich vermute
eine Kopplung zwischen der reduzierten Interrupt-Dichte und der stabileren Taktbasis. Vielleicht
spielt auch das neue Spacer-Design hinein.

Der Spacer selbst ist eine kleine Konstruktion aus geerdetem Metall – unscheinbar zwischen
Mainboard und Messbrücke eingeschoben. Aber er wirkt Wunder: HF-Amplituden um mehr als
die Hälfte gedämpft. Früher haben wir Kunststoffvarianten probiert; optisch sauberer, elektrisch
aber blind. Erst mit Metall kam Ruhe ins Spektrum. Ich erinnere mich an den Mittag des
achtundachtzigsten Tages: die Messreihe lief heiß, und plötzlich zeigten sich stabile Medianwerte
bei minus zweiundsechzig Prozent der vorherigen HF-Peaks. Kein Zufall mehr – eher so etwas
wie ein physisches Aufatmen des Systems.



Die Cross-Correlation lag bei rund 0,72; das war mein Beweis für elektrische Kopplung als
Hauptursache der Schwankungen. Interessanterweise blieb der Offset von 1,11 Sekunden nach
dem clocksource_switch() bestehen – vermutlich ein Software-Race irgendwo tief im
Timer-Stack. Aber es störte nicht weiter; wichtig war nur die Reproduzierbarkeit der
Dämpfung.

Ich hab danach Stunden damit verbracht, die Datenreihen mit Bootstrap-Analysen zu überlagern
– tausend Durchläufe pro Serie im CI-System simuliert –, um zu sehen, ob sich ein Muster
ergibt oder ob alles nur Rauschen ist. Das Ergebnis war schön gleichmäßig: Die Verteilung
schmalte sich sichtbar ein; vereinzelt tauchten noch Ausreißer auf (von früheren vierundzwanzig
Prozent runter auf fünf), aber sie fielen kaum mehr ins Gewicht.

„Also keine wilden Spitzen mehr?“ fragte Jana durch den Lautsprecher.

„Nur noch leise Hügel,“ sagte ich und grinste.

Die Vorbereitung der CI-Anpassung läuft bereits im Hintergrund: Ein neuer Job soll künftig die
EM-Traces direkt mit auswerten und den Dämpfungsgrad automatisch dokumentieren. Ich will
vermeiden, dass jemand später rätsele, warum plötzlich alles stabiler aussieht – Transparenz
gehört dazu.

Interessant ist auch der menschliche Effekt dieser Stabilität: Wenn die Messkurven ruhig
werden, wird man selbst ruhiger beim Arbeiten. Früher saß ich mit angehaltenem Atem vor dem
Monitor und hoffte auf einen brauchbaren Durchlauf; jetzt kann ich Kaffee holen gehen und
weiß trotzdem: Die Linie bleibt brav unten.

Technisch gesehen ist es fast poetisch – dieses Zusammenspiel von Hardware-Dämpfung und
softwareseitigem Filterprozess. Der Spacer nimmt dem System den Lärm von außen; BPF filtert
den inneren Lärm weg. Zusammen erzeugen sie eine Art Gleichgewichtsschicht zwischen
physischer Welt und Kernelraum. Wie zwei Stimmen in einem Chor: Eine hält den Ton sauber,
die andere sorgt dafür, dass kein Echo stört.

Manchmal frag ich mich, ob diese Ruhe trügerisch ist oder echt bleibt, wenn wir das Setup
skalieren – etwa auf mehrere Nodes oder diverse Boards in Serie geschaltet. Doch bisher
deutet alles darauf hin, dass sich das Verhalten überträgt: geringere Varianz unabhängig von
Lastverteilung oder Temperaturgradienten.

Ich werd morgen noch einmal prüfen müssen, ob sich der PR-Draft zur
Hardwaredokumentation sinnvoll erweitern lässt – vielleicht um einen kurzen Abschnitt zur EM-
Abschirmung im CI-Rack selbst. Noch ist unklar, wie weit wir diese Integration treiben wollen;
zu viel Detailliebe kann ja auch lähmen.

Während ich das letzte Datensegment sichere und das Licht in der Werkstatt schwächer wird,
denk ich daran, wie wir am Anfang dieses Projekts jeden Ausschlag gefeiert haben – jetzt feiern
wir Stille als Fortschritt. Pack ma’s also weiter ruhig an: Der nächste Schritt wird zeigen müssen,
ob diese neu gewonnene Präzision Bestand hat.

Spacer-Matrix und elektrische Kopplung

Der Morgen begann unscheinbar, ein flacher Dunst über der Donau, das Wasser spiegelte nur
andeutungsweise den Himmel. Ich hatte die Messgeräte schon in der Nacht vorbereitet, diesmal
mit den neuen Metall‑Spacern zwischen Logger und Gehäusewand. Servus, sagte ich leise zu



mir selbst, fast wie ein Ritual, bevor ich die erste Referenzmessung startete. Die HF‑Signale
sollten laut Simulation um etwa sechzig Prozent gedämpft werden – ein ehrgeiziger Wert, aber
physikalisch plausibel. Ich wollte es schwarz auf grün sehen.

Die ersten Traces liefen durch die Pipeline, während draußen der Nebel aufzog. Drinnen blinkte
der Logger ruhig, jede Sekunde ein Atemzug aus Licht. Die Summaries bauten sich im Speicher
auf: peak_amplitude, median_bandpower, crosscorr_with_clockevents – vertraute Parameter,
doch diesmal fühlten sie sich präziser an. Ich beobachtete den Rauchtestlauf mit zweihundert
Durchgängen. Die CI brauchte rund zwölf Prozent länger als zuvor; der Speicherverbrauch stieg
leicht. Dafür lag die Störkomponente deutlich niedriger. Fei sauber.

„Wie viel war’s jetzt wirklich?“ fragte ich mich halblaut.

„Etwa sechzig Prozent Reduktion – passt,“ antwortete ich mir und grinste kurz.

Ich wusste, dass diese Zahl nicht nur Statistik war. Sie bedeutete weniger Rauschen im Kopf,
weniger Nacharbeit im Code. Der Metall‑Spacer koppelte sich elektrisch in einer Weise an das
Gehäuse, die ich fast spüren konnte – als würde er das Zittern der Hochfrequenz nach außen
ableiten, fort von den sensiblen Taktsignalen. Ein einfaches Stück Metall, geerdet und richtig
positioniert, machte den Unterschied.

Dennoch blieb da dieser seltsame Versatz von 1,11 Sekunden zwischen GPS‑Zeit und interner
Uhr. Softwarebedingt vermutlich; Michael hatte recht behalten mit seiner Vermutung zum
Takt‑Offset im Kernel‑Modul. Ich erinnerte mich an unseren kurzen Chat am Vorabend: sein
Hinweis auf eine fehlende Synchronisationsroutine im Userland‑Daemon war präzise wie immer.
„Pack ma’s in die nächste Revision“, hatte er geschrieben. Ja – pack ma’s wirklich an.

Ich ließ die Daten durchlaufen und sah zu, wie das Logfile Zeile um Zeile wuchs. Das
Grundrauschen sank messbar; die Matrix aus Spacern schien zu wirken wie eine kleine
metallene Landschaft unter dem Gerät. Jede Verbindung leitete etwas ab, lenkte etwas um. Es
war fast poetisch: Ordnung durch Leitfähigkeit.

Am Nachmittag kam ein leichter Wind auf und trieb den Nebel fort. Der Blick über das Wasser
klärte sich – so wie auch meine Gedanken zur elektrischen Kopplung zwischen Board und
äußeren Strukturen klarer wurden. Wenn der Spacer korrekt geerdet ist und seine Fläche
proportional zur Kontaktzone bleibt, entstehen kaum parasitäre Blindströme; stattdessen bildet
sich eine definierte Rückführungsebene für hohe Frequenzen. Das klingt trocken, doch wer
einmal gesehen hat, wie ein instabiles Signal plötzlich ruhig wird, versteht die Schönheit darin.

Ich notierte: HF gedämpft um 60 %, Offset konstant bei 1,11 s. Das Ergebnis passte exakt zu
meinen Erwartungen aus dem letzten Abend an der Donau – damals ohne Handy, nur mit Nebel
und Atemluft als Referenzsystem. Jetzt fügte sich das Bild zusammen: Der Offset war kein
Hardwareproblem gewesen; er gehörte zur Software wie das Rauschen zum Fluss.

Am Abend überprüfte ich noch einmal alle Steckverbindungen. Nichts lockerte sich mehr; selbst
bei leichtem Druck blieb das Signal stabil. Ich öffnete kurz das Fenster – kalte Luft strömte
herein und brachte einen Hauch metallischen Geruchs mit sich. Vielleicht nur Einbildung oder
eine Erinnerung an Lötzinn vom Vormittag.

Manchmal denke ich, dass jedes elektronische System seinen eigenen Rhythmus hat,
einen Takt zwischen Spannung und Zeitversatz, fast so wie wir Menschen zwischen
Herzschlag und Atemzug.



Mit diesem Gedanken speicherte ich die finale Konfiguration ab: Metall‑Spacers als
Standardempfehlung für künftige Builds, kompakte EM‑Summaries als CI‑Default und
Rohtraces nur on demand abrufbar. Die Matrix stand – stabiler als jede vorherige Version.

Draußen dämmerte es bereits wieder; entlang des Flusses glommen vereinzelte Lichter auf dem
Wasser. In meiner Werkstatt surrten noch schwach die Lüfter nach, rhythmisch wie ferne
Wellenbewegungen. Ich schaltete das System in den Standby‑Modus und hörte kurz nichts
außer meinem eigenen Atem.

Der Offset blieb bestehen – 1,11 Sekunden als kleiner Restfehler zwischen zwei Welten –, doch
diesmal störte er mich nicht mehr. Er gehörte dazu wie der Schatten zum Licht eines Signals.

So endete dieser Tag ruhig und vollendet technisch präzise; morgen würde ich mich dem
Kernel‑Trace in einer isolierten VM widmen.

EM-Traces in der CI evaluieren

Ich sitze noch im Halbdunkel des Labors, das leichte Brummen der Messverstärker mischt sich
mit dem kühlen Rauschen des Lüfters vom CI‑Node. Servus, sag ich leise zu mir selbst – heut
geht’s ums Eingemachte: die elektromagnetischen Traces und was sie uns in der Continuous
Integration wirklich bringen. Seit Tagen geistert die Frage durchs Team, ob wir die Rohdaten
archivieren oder lieber nur Summaries speichern sollen. Nach den letzten Läufen ist es klarer
geworden.

Der Smoke‑Job von Tag 91 war ein Wendepunkt. Zweihundert Samples pro Durchlauf, einmal
mit Spacer, einmal ohne. Ein halber Millimeter Metall kann Welten verändern: Dämpfung im
Hochfrequenzband, veränderte Spike‑Rate, Bandpower wie ausgewaschen. Aber eines blieb
störrisch konstant – der Offset von rund 1,11 Sekunden zwischen Capture und Bootstrap. Ich
hab’s dreimal gegengeprüft, auch gegen die Timestamps aus dem Runner‑Split. Nix verrutscht.
Der Offset steht fester als ein alter Granitblock an der Donau.

„Wenn sich alles ändert außer der Zeitdifferenz – dann steckt da Struktur drin“, meinte
Tarek gestern beim Kaffee.

„Oder bloß Zufall in stabiler Verpackung“, hab ich zurückgegeben.

Doch es fühlt sich nicht nach Zufall an. Eher wie ein physikalischer Fingerabdruck des Systems
selbst – eine Eigenschwingung zwischen Kernel‑Scheduler und C‑State‑Wechseln. Wenn dieser
Offset konstant bleibt, dann kann ich ihn als Fixpunkt nehmen. Die Summaries brauchen genau
so einen Anker, um überhaupt vergleichbar zu sein.

Also hab ich heute früh die Rohtraces durch unser neues Aggregationsmodul geschickt. Statt
Megabytes an Messwerten entstehen kompakte JSON‑Summaries: Mittelwerte über
Frequenzbänder, Spike‑Dichten pro Millisekunde, ein paar Normalisierungen zur
Laufzeitkorrektur. Das kostet uns etwa zwölf Prozent mehr Rechenzeit im CI‑Pfad – gemessen
mit perf stat über zehn Runs hinweg. Zwölf Prozent Mehrbedarf sind akzeptabel; das war
vorher abgesprochen und passt ins Budget der Runner.

Was mich überrascht hat: die Summaries lassen sich leichter interpretieren als gedacht. Man
erkennt Muster schneller, weil das Rauschen rausgefiltert ist – fast so, als hätten wir das System
selbst leiser gestellt. Und trotzdem bleibt genug Information erhalten, um Unterschiede zwischen
den Konfigurationen sichtbar zu machen. Gerade bei den Spacer‑Tests zeigt sich das deutlich:



Mit geerdetem Metall verschiebt sich die Bandpower in Richtung niedrigerer Frequenzen; ohne
Erdung sind die Peaks höher und dichter gestreut. In den Summaries sieht man das sofort an
den verschobenen Medianwerten.

Ein kurzer Moment Zweifel kam auf, ob wir damit vielleicht zu viel verlieren – diese winzigen
Spikes im Nanovoltbereich könnten ja Hinweise auf Mikroresonanzen sein, versteckt unter dem
Messrauschen. Aber wenn ich ehrlich bin: Für die CI zählt Reproduzierbarkeit mehr als absolute
Vollständigkeit. Wir wollen Trends erkennen, keine Doktorarbeit über elektromagnetische
Eigenmoden schreiben (noch nicht zumindest). Also bleib ich dabei: Summaries statt Rohtraces.

Am Nachmittag hab ich einen neuen Lauf gestartet – diesmal mit aktiviertem
do_clocksource_switch() während des Captures. Die Idee: sehen, ob sich der konstante
1,11s‑Offset verschiebt, wenn die Quelltaktquelle währenddessen wechselt. Ergebnis? Keine
Änderung messbar innerhalb unserer Auflösung von ±3 ms. Das bestätigt meine Vermutung: Der
Offset ist kein Artefakt des Timings oder der Messtechnik; er gehört zum Systemverhalten
selbst.

Während die LED am Runner blinkt und das Logfile Zeile um Zeile füllt, denke ich darüber
nach, wie viel Aufwand wir betreiben für etwas so Flüchtiges wie elektromagnetische Spuren im
Siliziumtakt einer CPU. Vielleicht ist genau darin der Reiz – dass diese Signale halb technisch,
halb lebendig wirken. Sie zittern wie Atemzüge eines Systems, das arbeitet und ruht zugleich.

Gegen Abend kommt Tarek nochmal vorbei, schaut auf den Monitor und grinst:

„Na Mika, zufrieden?“

„Jo mei“, sag ich und schieb ihm den Plot rüber, „zwoa Kurven weniger Rauschen als
gestern – pack ma’s also in die CI.“

Damit ist entschieden: Ab jetzt laufen alle EM‑Messungen über das Summary‑Schema;
Rohtraces bleiben lokal für Debugzwecke. Der zusätzliche Laufzeitbedarf wird dokumentiert,
aber nicht optimiert – Stabilität vor Geschwindigkeit.

Ich notiere noch rasch im Logbuch: Offset unverändert, Summaries stabil, CI akzeptiert.
Draußen senkt sich Nebel über Passau; in meinem Kopf summt noch das Restfeld der
Verstärker nach. Morgen geht’s weiter mit den BPF‑Probes und dem baseline_recalc‑Patch –
vielleicht finden wir dort endlich den Schlüssel zu diesem steten Flackern zwischen Physik und
Code.

~1,111s Offset trifft Scheduler-Wake

Der Morgen war grau, fast milchig. Der Nebel über der Donau hing tief und schwer, wie eine
Decke aus Atemluft, die den Ton der Welt dämpfte. Ich stand wieder an derselben Stelle wie
vor ein paar Tagen – diesmal mit GPS‑Logger im Rucksack, nicht mehr ganz so versunken im
Nebelgefühl. Jetzt wollte ich’s genau wissen: ob der Versatz von 1,111 Sekunden wirklich
konstant blieb oder nur eine Laune der Messung war.

Drinnen im Labor summten die Lüfter leise, als ich mich in die Konsole einloggte. Die letzten
drei Nächte hatte das Testsystem rund dreihundert Runs gefahren, alle mit externer Zeitreferenz
vom GPS‑Empfänger. In der Logdatei blinkte jede Zeile wie ein kleiner Pulsschlag des Systems:
wake_up_process → Timestamp → Delta zum Referenzsignal. Die Mittelwerte sahen
verdächtig ruhig aus – fast zu ruhig.



„Na schau her“, murmelte ich halblaut, „des is fei sauberer als gedacht.“

Ich hatte auf größere Streuung getippt. Aber seit ich den Scheduler auf SCHED_FIFO
umgestellt hatte, fiel die Varianz spürbar ab. Keine wilden Ausreißer mehr, kein Jitter über
0,2 ms hinaus. Fast so, als hätte das System selbst beschlossen, ruhiger zu atmen.

Ich zoomte in den Plot hinein, markierte Run #147 bis #152 – dort lag exakt dieser
1,111‑Sekunden‑Offset zwischen Trigger und tatsächlichem Wake‑Event. Es war kein Zufall
mehr; das Muster zog sich durch alle Referenzen. Ich erinnerte mich an Michaels Trick mit der
Clock‑Nesting‑Routine und grinste kurz: Er meinte neulich am Telefon, man müsse manchmal
nur dem Kernel den Mut geben, sein eigenes Timing zu vertrauen.

„Pack ma’s also richtig an“, sagte ich leise und startete den nächsten Satz Messungen.

Die Sekunden liefen gleichmäßig dahin. Ich beobachtete im Terminalfenster die
Live‑Timestamps: jeder Wert eine kleine Geschichte aus Interrupts und
Scheduling‑Entscheidungen. Nach etwa einer Stunde griff ich zum Notizbuch – ja, Papier –,
zeichnete grob die Driftkurve nach. Dabei fiel mir auf, dass der Offset zur GPS‑Zeit nicht völlig
starr blieb; er wogte minimal hin und her, kaum mehr als ein leichtes Atmen im Systemrhythmus.

Das erinnerte mich an den Nebel draußen: unscheinbare Bewegung in scheinbarer Ruhe.
Vielleicht war das präzise Messen gar nicht so sehr eine Frage der Technik allein – vielleicht
musste man das Rauschen zulassen, um seinen Mittelpunkt zu finden.

Ich prüfte noch einmal die Prioritäten der Threads. Der Wake‑Handler lief nun fix unter
SCHED_FIFO mit Prio 99; alle anderen Prozesse waren zurückgestuft. Das System reagierte
jetzt auf jedes externe Signal fast synchron mit dem GPS‑Tick. Im Oszilloskop sah es aus wie
zwei Wellenformen, die sich gegenseitig suchten und schließlich deckungsgleich wurden.

„Des schaut guad aus“, dachte ich laut und schrieb ins Log: Offset stabilisiert bei 1,111 s
± 0,001 s – Hypothese bestätigt.

Dann ließ ich mich auf dem Drehstuhl zurückfallen und lauschte einen Moment nur auf das
Summen der Geräte. So klang Kontrolle – aber auch Verantwortung: Wenn alles exakt läuft,
merkt man erst recht jede Abweichung im Inneren.

Ich öffnete das Fenster einen Spalt breit; feuchte Luft drang herein. Der Nebel draußen löste
sich langsam in dünne Schleier auf. Vielleicht würde ich später noch einmal hinunter ans Wasser
gehen – ohne Logger diesmal –, einfach um zu sehen, ob dort dieselbe Präzision herrschte oder
ob die Donau ihre eigene Zeit behielt.

Die Sonne kämpfte sich durch das Grau und warf einen fahlen Lichtstreifen über den Tisch. Auf
dem Monitor ratterten weiter Zahlenkolonnen vorbei; sie wurden ruhiger mit jeder Iteration des
Tests. Ich wusste jetzt: Der wake_up_process korrelierte exakt mit meinem Offset – kein Zufall
mehr, sondern Ergebnis eines Systems im Gleichgewicht.

Im Hintergrund blinkte eine Status-LED regelmäßig wie ein Metronom. Ich speicherte alle
Datenpakete ab und schrieb in mein Laborjournal: SCHED_FIFO hat Varianz signifikant
gesenkt; weitere Langzeitbeobachtung nötig. Dann schloss ich kurz die Augen und hörte
meinen eigenen Herzschlag gegen das gleichmäßige Ticken des Systems antreten.

Vielleicht ist Synchronität gar kein Zielpunkt, dachte ich noch – eher ein Zustand des Zuhörens
zwischen Mensch und Maschine.



So endete dieser Tag im Labor leiser als gedacht; doch irgendwo zwischen GPS‑Referenz und
Scheduler‑Wake begann bereits das nächste Kapitel zu flimmern.

TTWU-Stacksignatur und Host/VM-Vergleich

Der Vormittag begann still, nur das rhythmische Ticken des GPS‑1PPS‑Signals durchbrach die
Luft im Labor. Ich hatte den Aufbau inzwischen so stabil, dass jeder Wakeup‑Zyklus wie eine
kleine Welle im Raum fühlbar war — gleichförmig, präzise, fast poetisch in seiner Wiederholung.
Heute wollte ich endlich sicher wissen, ob der Offset wirklich an ttwu_do_wakeup hängt und
wie sich sein Abdruck zwischen Host und VM unterscheidet.

Ich startete die ersten Messreihen noch vor Sonnenaufgang. Die eBPF‑Kprobes saßen sauber
auf try_to_wake_up und ttwu_do_wakeup, flankiert vom Timekeeping‑Pfad, der mir den
Takt vorgab. Sechzig Läufe später sah ich es schwarz auf weiß: Der 1,111‑Sekunden‑Sprung
folgte nicht dem Scheduler-Wechsel selbst, sondern kauerte genau im Schatten von
ttwu_do_wakeup. Es fühlte sich an, als hätte ich einen alten Bekannten wiedererkannt – dieses
Muster war schon einmal da gewesen, nur unscheinbarer.

„Des is fei a sauberes Signal,“ murmelte ich halblaut, während der Analyzer das nächste
Cluster zeichnete.

Die Stacksignaturen ordneten sich in zwei Gruppen. Die eine mit klarer Dominanz von Context-
Switches direkt nach einem Wakeup, die andere mit einer kurzen Latenzphase davor. Zwischen
beiden Clustern lag kaum Varianz – weniger als eine Mikrosekunde im Mittel – doch ihre
Existenz war unübersehbar. Ich begann sie intern als WakeChain-A und WakeChain-B zu
bezeichnen, nicht aus Romantik, sondern weil diese Namen im Log leichter auffindbar waren.
Und ehrlich gesagt: ein bisschen Leben im Datenmeer schadet nie.

Im Host-System zeigte sich ein fast stoischer Gleichlauf zwischen Stack-ID und Offset. Jede
Iteration reproduzierte denselben Verlauf; die Abweichung war minimal, als hielte jemand den
Atem an. In der virtuellen Maschine dagegen blieb der Puls derselbe, aber die Amplitude
vibrierte leicht – keine Instabilität im eigentlichen Sinn, eher ein Hinweis darauf, dass der
Hypervisor seine eigene kleine Zeitphysik lebt. Ich notierte mir: Host/VM-Differenz stabil in
Struktur, aber verschoben in Mikrophase.

Der Unterschied fühlte sich wie ein Dialog zweier Uhren an.

„Du gehst mir voraus“, sagt der Host.

„Nur weil du glaubst, echt zu sein“, antwortet die VM leise.

Ich musste darüber lächeln. Technik ist manchmal menschlicher als gedacht.

Die nächsten Stunden verbrachte ich damit, den Δ(ttwu→tkread) genauer zu vermessen. Dabei
fiel auf: selbst wenn mechanische Störungen ins System eingeleitet wurden – leichte Vibrationen
am Gehäuse oder minimale Spannungsvariationen –, blieb das Verhältnis konstant. Der Offset
schien immun gegen äußere Einflüsse; was zählte, war ausschließlich die interne Reihenfolge der
Kernelpfade. Der Stack legte seine Signatur ab wie ein Siegelring in weichem Metall.

Ich verschob den Fokus dann auf den Vergleich zwischen realem Blech und Hypervisor-
Schicht. Im direkten Overlay sah man deutlich: zwei Plateaus mit gleichem Verlaufsmuster, aber
versetzter Nullinie. Das erinnerte mich an Interferenzmuster aus dem Physikunterricht – zwei



Wellenzüge gleicher Frequenz, leicht phasenverschoben. Solche Bilder helfen mir beim Denken;
Zahlen allein sind selten genug.

Nachmittags wurde das Licht golden über Passau hinaus, während mein Terminal weiterlief. Ich
hatte inzwischen eine Routine entwickelt: Lauf starten, Kaffee holen, zurückkommen und das
Ergebnis betrachten wie ein Wetterbericht des eigenen Systems. Diesmal bestätigte sich
endgültig: Der Offset gehört zu ttwu_do_wakeup wie der Schatten zum Objekt. Alles andere
folgt erst danach.

Ich ließ mir Zeit mit den letzten Durchgängen und schaute immer wieder auf die Stabilität der
Clusterverteilung. Mit jedem Lauf wuchs mein Vertrauen in die Datenbasis; kein Ausreißer
sprengte das Muster. Selbst bei veränderten CPU-Governors blieb das Grundbild erhalten –
zwei stabile Clusterlinien im Stackraum und eine konstante Differenz zwischen Host und VM.

Zwischen all dem Technischen lag etwas Beruhigendes: die Erkenntnis, dass selbst virtuelle
Systeme ihre Eigenart behalten dürfen und trotzdem berechenbar bleiben können. Vielleicht ist
Präzision auch eine Form von Gelassenheit — man misst nicht nur Zeiten, man spürt ihre
Haltung.

Als ich schließlich den Analyzer stoppte und die letzte Kurve auslief wie ein Atemzug nach einer
langen Strecke, wusste ich: Die Spur führt eindeutig weiter hinein in den Kontext von TTWU
selbst – tiefer hinein in seine Übergänge und vielleicht auch in jene stille Zone zwischen
Prozesszustand und Schedulerentscheidung.

Servus Abendsonne überm Inn – pack ma’s morgen an; dort wartet schon das nächste Kapitel
im Takt dieser seltsam treuen 1,111 Sekunden.

WF_MIGRATED unter Last erklärt Mikroversatz

Der Morgen begann mit einem feinen, kühlen Dunst über der Donau. Ich hatte das Notebook
schon hochgefahren, bevor der Kaffee fertig war. Das leise Surren der Lüfter klang fast wie ein
Atemzug – gleichmäßig, konzentriert. Heute ging es darum, zu verstehen, warum unter Last der
Anteil von WF_MIGRATED plötzlich anstieg und warum der kleine Mikroversatz zwischen den
Threads messbar wurde.

Ich öffnete die Messreihe vom Vortag. Die Proben zeigten klar: Sobald ich den CPU‑Lasttest
startete, stieg WF_MIGRATED um etwa zwölf Prozentpunkte. Es war kein Zufall; das
Scheduling-System reagierte auf die künstliche Belastung mit vermehrten Migrationen zwischen
Kernen. Der Effekt zeigte sich nicht nur in den Statistiken, sondern auch im Timing-Offset
meines Loggers – jener grüne Punkt, der gestern noch im Nebel des Nachmittags so friedlich
geblinkt hatte.

„Servus, Mika“, hatte Michael neulich gesagt, „du wirst sehen, dass die µs-Verschiebung
mehr über dein System verrät als jedes Benchmark-Diagramm.“

Er hatte recht behalten. Ich maß heute eine Verschiebung von exakt 14,7 µs zwischen zwei
identischen Tasks. Kein Jitter, kein Drift – einfach ein konstanter Versatz, als würde jemand
einen winzigen Keil zwischen Start und Ende schieben. Ich notierte mir die Werte und ließ den
Rechner weitere fünf Minuten laufen. Die Last blieb konstant bei 80 %, der Offset blieb
unverrückbar.



Ich dachte an meinen Spaziergang durch den Nebel gestern: das sanfte Grau über dem Wasser,
das ruhige Tropfen vom Geländer in die Donau. Damals war alles stabil und ruhig gewesen –
keine Threads, keine Prozesse, nur das gleichmäßige Pochen meines Schritts auf dem Kiesweg.
Jetzt hingegen saß ich vor einem System voller Bewegung und doch mit etwas Statischem darin:
einem festen Mikroversatz.

Die Erklärung lag nahe: Wenn WF_MIGRATED zunimmt, werden Threads häufiger zwischen
CPU-Kernen verschoben. Jeder dieser Kerne besitzt eigene Zeitregister und Cachestrukturen;
selbst wenn sie per TSC synchronisiert sind, bleiben minimale Unterschiede – Nanosekunden
hier, Mikrosekunden dort. Unter Last summiert sich das zu einem reproduzierbaren Muster.

Ich prüfte meine Logs erneut. In den letzten zwanzig Sekunden hatte der Scheduler insgesamt
248 Migrationen gezählt. Der Logger registrierte parallel eine gleichbleibende Abweichung von
14 bis 15 µs zwischen Timestamp A und B. Diese Stabilität faszinierte mich mehr als jede
Abweichung hätte tun können.

„Pack ma’s“, murmelte ich leise und stellte die nächste Testreihe ein.

Diesmal erhöhte ich die Last langsam in Stufen von zehn Prozentpunkten. Bei jeder Erhöhung
sprang WF_MIGRATED etwas nach oben – nicht linear, aber stetig genug, um ein Muster zu
erkennen. Zwischen 70 % und 90 % CPU-Auslastung pendelte sich der Wert bei rund 31 %
ein. Genau dort blieb auch der Mikroversatz konstant: 14 µs ±0,2 µs.

Es fühlte sich an wie eine Art Gleichgewichtspunkt des Systems – als ob Hardware und Kernel
sich still darauf geeinigt hätten: „So weit darfst du dich versetzen, aber keinen Schritt weiter.“
Diese Grenze zu finden war mein Ziel für den Tag.

Ich schrieb mir eine Notiz ins Laborjournal: „Offset bleibt konstant trotz steigender Last →
Indikator für stabile Clocksource-Synchronisation.“ Dann lehnte ich mich zurück und lauschte
dem Raumklang aus Lüftern und Festplattenköpfen. Es war fast Musik darin – rhythmisch wie
Herzschläge verschiedener Wesen, die dennoch denselben Takt fanden.

Im Hintergrund flackerte wieder das grüne Licht des Loggers auf dem Tisch. Gleiches Intervall
wie gestern Abend; etwa jede Sekunde blinkte er kurz auf. Ich erinnerte mich daran, dass dieser
Rhythmus unabhängig von meiner Messung lief – ein internes Signal aus seiner Firmware –,
doch heute sah ich ihn mit anderen Augen: Er erinnerte mich daran, dass selbst einfache Geräte
ihr eigenes Verhältnis zur Zeit haben.

Vielleicht ist es genau dieses Eigenleben der Takte und Frequenzen, das mich so fasziniert: Wir
Menschen denken in Sekunden und Minuten; Systeme messen in Zyklen und Offsets.
Dazwischen liegt dieser unscheinbare Bereich der Mikrosekunden – klein genug zum
Übersehen, groß genug zum Spüren im Verhalten eines komplexen Schaltwerks.

Als ich gegen Mittag die Tests beendete, war alles klar dokumentiert: Die erhöhte Last steigert
verlässlich den Anteil von WF_MIGRATED, bringt damit messbare Mikroversätze hervor –
doch innerhalb stabiler Grenzen bleibt der Offset konstant. Keine Drift über Stunden hinweg.

Fei interessant war’s heit wieder; so viel Präzision in solch winzigen Maßstäben macht dem
Kopf fast schwindlig vor Freude.

Ich speicherte alle Protokolle ab und schloss leise das Terminalfenster. Draußen löste sich
langsam der Nebel auf; über dem Wasser lag helles Winterlicht wie eine feine Folie aus
Aluminiumglanz.



Vielleicht würde ich später noch einmal rausgehen ohne Bildschirm – einfach schauen, ob die
Donau heute genauso gleichmäßig fließt wie meine Offsets geblieben sind –, bevor morgen ein
neues Kapitel beginnt.

rq->clock und first_tkread im Fokus

Ich erinnere mich gut an den Nachmittag über Passau, als die Sonne tief über dem Fluss hing
und das Messsystem endlich wieder stabil lief. Nach Tagen des Probierens war klar: Wenn ich
wirklich verstehen wollte, warum sich der µs‑Versatz vor dem ersten tkread so hartnäckig hielt,
musste ich tiefer in die Schichten von rq->clock eintauchen. Der Scheduler hatte sein eigenes
Zeitgefühl, leicht verschoben gegenüber dem globalen Timekeeping – fast wie zwei präzise
Uhren, die sich gegenseitig misstrauen.

Im Prinzip wusste ich, dass dieser Versatz nicht einfach ein Fehler war. Er war ein Zeichen dafür,
dass der erste Zugriff auf die Zeitquelle innerhalb des Tasks nicht exakt dort stattfand, wo ich
ihn intuitiv vermutet hätte. Zwischen Wake‑up und erstem Tick‑Read lag eine mikroskopische
Lücke – winzig genug, um im Alltag nie aufzufallen, aber groß genug, um in meinen Messungen
als stabile µs‑Verschiebung aufzuleuchten. Servus Komplexität, hab ich mir gedacht.

Ich saß also vor meinem Trace‑Aggregator und betrachtete die beiden Cluster aus den letzten
60 Läufen: 30 auf dem Host, 30 in der VM. Der konstante Offset von etwa 1,111 Sekunden
zwischen beiden Welten blieb wie in Stein gemeißelt. Die Varianz jedoch – sie erzählte eine
eigene Geschichte. Läufe mit gesetztem WF_MIGRATED zeigten ein anderes Streumuster im
Verhältnis von Wake bis First‑Read als jene ohne dieses Flag. Das war kein Zufall.

„Also liegt’s doch am Migrieren?“ fragte ich halblaut in den leeren Raum.

„Teilweise,“ antwortete mein innerer Skeptiker. „Aber der Offset selbst bleibt
unbeeindruckt.“

Tatsächlich: Egal ob der Task gewandert war oder nicht – der absolute Unterschied zwischen
Host und VM blieb konstant. Nur die Form der Kurve innerhalb eines Laufs veränderte sich
leicht. Ich sah es deutlich im Overlay mehrerer Runs: Die Linien atmeten unterschiedlich stark,
aber sie begannen und endeten am selben Ort.

Das brachte mich zurück zu rq->clock. Diese interne Zeitskala ist nicht einfach ein Abbild von
ktime_get(), sondern eine lokal gepflegte Größe pro Runqueue, angepasst bei jedem
Taktwechsel oder Migrationsevent. In einer Umgebung mit mehreren CPUs kann das bedeuten,
dass zwei benachbarte Queues minimal unterschiedliche Vorstellungen davon haben, was „jetzt“
bedeutet. Wenn also ein Task durch WF_MIGRATED tatsächlich auf einer anderen CPU landet,
bringt er sein altes Gefühl für Zeit mit – zumindest für einen Moment.

Ich konnte dieses Verhalten reproduzieren: Bei einem simulierten Workload ohne Migration
blieb die Differenz zwischen Wake‑Timestamp und erstem Timekeeping‑Read eng begrenzt;
sobald Migration möglich war, weitete sich das Band um einige Mikrosekunden aus. Trotzdem
war der Mittelwert unbeirrt. Er zeigte keine Bewegung nach oben oder unten – als würde er mir
sagen wollen: Ich bin unabhängig von eurer Hektik.

Diese Unabhängigkeit faszinierte mich mehr als alles andere an dem Abend. Denn sie bedeutete,
dass das System trotz all seiner internen Verschiebungen eine stabile Referenzlinie beibehielt –
genau das Fundament, das man braucht, wenn man Korrelationen zwischen Host und VM
wirklich ernst nehmen will.



Der Schlüssel lag also nicht darin, den Offset zu eliminieren, sondern ihn richtig zu interpretieren.
Die µs‑Verschiebung vor dem ersten tkread war quasi der Fingerabdruck des Schedulers: ein
kleiner Abdruck seiner inneren Mechanik. Und WF_MIGRATED erklärte nur die Breite dieses
Abdrucks – nicht seine Position.

Ich stellte mir bildlich vor, wie zwei winzige Zahnräder ineinandergreifen: Das eine repräsentiert
rq->clock, das andere das globale Timekeeping. Der Eingriff ist nie völlig spielfrei; ein klein
wenig Schlupf bleibt immer bestehen. Doch solange dieser Schlupf konstant ist, kann man ihn
messen und kompensieren.

Später in der Nacht prüfte ich noch einmal die Traces vom Weihnachtslauf über Passau. Die
Stadt lag still da draußen; nur vereinzelt spiegelten sich Lichter im Wasser. Ich zoomte hinein in
jenen Moment kurz nach dem Wake‑Event: zwei Threads nebeneinander – einer migriert, einer
stationär – beide lesen kurz darauf ihre Zeitquelle. Das Muster wiederholte sich präzise genug,
dass ich fast poetisch wurde beim Betrachten dieser winzigen Regelmäßigkeit im Chaos.

„Schau hi,“ dachte ich leise, „selbst im Rauschen gibt’s Rhythmus.“

Als ich schließlich die letzten Marker setzte – einen für first_tkread, einen für den Beginn
des nächsten Abschnitts –, spürte ich diese ruhige Gewissheit: Der Offset bleibt unabhängig von
allem Drumherum bestehen. Nur seine Geschichte drumherum wird reicher erzählt.

Und genau dort will ich weitermachen – bei den Übergängen zwischen diesen Geschichten aus
Zeit und Kontext.

Enqueue erreicht: seqcount-Retries als Marker

Ich hab an dem Abend den letzten Messlauf nochmal gestartet, diesmal mit Fokus auf die
Ziel‑CPU. Das war kein großer Sprung im Code – nur ein kleiner Hook direkt beim Enqueue,
um zu sehen, ob die Clock dort kippt oder stabil bleibt. Servus, dacht ich mir, pack ma’s
gscheid an. Die Daten aus Tag 99 und 100 hatten ja schon gezeigt, dass sich was zwischen
ttwu_queue und activate_task abspielt. Der rq‑Clock‑Wert wanderte dort manchmal ein
paar Dutzend Mikrosekunden, je nachdem, ob der Task migriert worden war oder nicht.

Die 1,111‑Sekunden‑Konstante hielt dagegen stoisch stand. Egal ob unter Last oder idle –
±0,004 s Abweichung höchstens. Ich begann zu vermuten, dass dieser Offset gar nicht mehr
direkt vom Scheduling kam, sondern sich als Basislinie durch alle Layer zog. Vielleicht eine Art
globaler Taktanker im Messaufbau selbst. Aber das war nur Hintergrundrauschen für den
eigentlichen Punkt: die seqcount‑Retries.

Als ich die ersten Logs durchsah, fiel mir auf, dass genau in den Momenten eines
Clocksource‑Wechsels mehrfach Retries getriggert wurden – immer schön sauber dokumentiert
durch das BPF‑Tracing. Das Muster war verblüffend gleichmäßig: Ein Retry kurz vor dem
enqueue_call, einer danach. Wenn man sie übereinanderlegt, bilden sie eine Art Markerlinie im
Zeitverlauf. Da wurde mir klar: Die Retries markieren nicht bloß einen Fehlerfall oder Race; sie
sind wie kleine Blinksignale des Systems selbst.

„Hast du das gesehen?“, murmelte ich leise zu mir selbst, „zwei Retries – genau
dazwischen der Clockswitch.“

„Ja freilich“, antwortete ich im Kopf zurück. „Des is fei koa Zufall nimmer.“



Ich zoomte in die Timeline: Der seqcount im Kernel hält ja beim Lesen der Clocksource einen
Zählerstand fest; wenn währenddessen ein Update passiert, wird neu gelesen. Genau diese
Mechanik sorgt für Konsistenz – und gleichzeitig für minimale Verzögerungen bei hoher Taktlast.
Was mich überraschte: Diese Retries traten mit derselben Regelmäßigkeit auf wie der Offset von
1,111 Sekunden stabil blieb. Zwei Phänomene unterschiedlicher Größenordnung –
Mikrosekunden gegen Sekunden –, aber verbunden durch dieselbe Ruhe in ihrem Muster.

Ich beschloss also, den Zusammenhang nicht über Korrelationen zu deuten, sondern über
Struktur: Der Clocksource‑Switch erzeugt eine Welle von seqcount‑Retries; diese markieren
wiederum exakt das Zeitfenster zwischen ttwu_queue und activate_task, wo rq->clock
flackert. Wenn man es so betrachtet, dann ist jeder Retry ein Impuls dafür, dass die
Scheduleruhr kurz ihre Richtung sucht.

In einem der 80 Läufe zeigte sich etwas Faszinierendes: Bei WF_MIGRATED‑Tasks stieg zwar
erneut die Varianz (+13 µs Medianabweichung), aber das Verhältnis zwischen erster
Retry‑Marke und tatsächlichem Aktivieren blieb konstant – ±2 µs über alle Kerne hinweg. Ich
saß da und musste grinsen; so präzise hatte ich’s selten gesehen.

Die CPU schien also genau zu wissen, wann sie loslassen und wann sie übernehmen sollte – als
würde sie ihren eigenen Puls lesen. Das klang poetischer als es gemeint war, doch manchmal
spürt man beim Debuggen eben diesen seltsamen Gleichklang zwischen Technik und Rhythmus.

Gegen Mitternacht nahm ich noch einmal den Graph zur Hand: Aufgetragen waren rq->clock
(y) gegen Zeit (x), darübergelegt die seqcount‑Retry‑Marker als rote Punkte. Es sah fast aus
wie Herzschläge auf einem Monitor – regelmäßige Zacken um jeden Kontextwechsel herum.
Und darunter diese ruhige Linie des Offsets bei 1,111 s wie ein Grundton.

Kurz dachte ich daran, ob dieser konstante Offset vielleicht sogar helfen könnte: Eine Referenz
zur Kalibrierung künftiger Messungen? Wenn er stabil bleibt, kann man ihn abziehen und
bekommt eine quasi absolute Sicht auf das Verhalten der Clocks selbst.

Ich machte mir eine Notiz: Offset fix; retried reads = event markers. Damit ließe sich das
nächste Kapitel klar strukturieren – vom reinen Beobachten hin zum Steuern der Testumgebung.

Ein letzter Blick auf den Lauf zeigte keine neuen Überraschungen mehr. Alles verhielt sich ruhig;
die Retries kamen verlässlich nach jedem Switchback der Clocksource. Kein Drift über
mehrere Stunden hinweg.

Langsam senkte sich draußen Nebel über die Donauufer bei Passau. Ich hörte noch das
monotone Klicken des Lüfters im Rackraum und dachte daran, wie jede kleinste Schwankung
hier drinnen zur Geschichte eines Systems werden kann.

Morgen will ich prüfen, ob sich diese Marker auch nutzen lassen – nicht nur zum Beobachten,
sondern vielleicht sogar zum Synchronisieren.

Clocksource-ID Logging und Burst-Analyse

Ich saß wieder an der Donau, die Luft war klar und ein wenig kälter als gestern. Der alte grüne
Logger blinkte träge im Taschenlicht, als wollte er sagen: „Servus, ich laufe noch.“ Hundert Tage
fast, und immer noch derselbe Rhythmus – 1,111 Sekunden Versatz, stabil wie ein Stein im



Flussbett. Aber heute hatte ich was Neues vor: die Clocksource-ID endlich sauber mitzuloggen
und die Bursts zu verstehen, die nur dann auftauchten, wenn ein System von einer Quelle zur
anderen sprang.

Zuerst prüfte ich den Speicher. Die letzten Sessions zeigten kaum Ausreißer, nur diese kurz
aufflackernden Spikes beim Umschalten von tsc auf hpet oder zurück. Ich hatte sie früher für
Netzrauschen gehalten, jetzt aber wurde klar: Das waren keine Zufälle, sondern strukturierte
Übergänge. Es sah so aus, als würde der Kernel in jenen Momenten kurz den Takt verlieren –
nicht wirklich Zeit verlieren, eher eine winzige Unsicherheit hineinlassen.

“Mei Mika,” meinte Michael neulich am Telefon, “vielleicht misst du gar keinen Fehler,
sondern den Atem des Systems selbst.”

Ich grinste damals nur. Aber je länger ich auf die Daten starrte, desto mehr klang das nach einer
brauchbaren Hypothese. Ein Atemzug zwischen zwei Taktquellen – das passte sogar poetisch.

Die Offset-Kurven waren besonders spannend kurz vor einem Retry-Ende. Wenn der Logger
merkt, dass eine Antwort zu spät kommt und neu sendet, bleibt dieser Offset bestehen – als ob
er vorausahnte, dass noch etwas in der Leitung hängt. Ich habe begonnen, diesen Moment
gezielt herauszuschreiben: gerade bevor der Retry-Mechanismus zuschnappt. Manchmal
verschiebt sich das Delta um winzige Mikrosekunden; manchmal bleibt es stur gleich. Der
Unterschied zwischen A→B und B→A wird da entscheidend.

Ich erinnere mich gut an einen Sonntagabendmesslauf: Zwei Stationen pingten sich abwechselnd
an; beide hatten unterschiedliche Clocksources – eine tsc-stabilisiert durch P-State-Lock, die
andere über hpet getaktet. Im Mittel war alles ruhig; doch sobald ich manuell switchete (ein
kleiner Eingriff über sysfs), kam ein plötzlicher Burst von fünf bis sieben Frames mit verrücktem
Offsetverhalten. Danach sank alles wieder ins Rauschen zurück.

Es war also kein dauerhafter Fehlerzustand – nur ein kurzer Übergangsmoment. Und genau dort
lag das Erkenntnisfenster offen: Burst nur bei Switches beobachtet. Ich markierte jeden dieser
Punkte mit einer eigenen ID im Logfile und ergänzte sie um die jeweilige clocksource-ID des
Systems. So ließ sich jeder Messwert später eindeutig zuordnen.

Einmal fragte mich meine Kollegin Anna leise über den Chat:

“Wenn du sagst Burst – meinst du Störungen oder Synchronisationsereignisse?”

“Beides ein bissl,” schrieb ich zurück.

Denn es fühlte sich genau so an: Nicht einfach Störung oder Korrektur allein – sondern eine
Mischung aus beidem. Die Systeme redeten plötzlich lauter miteinander und fanden danach
wieder zu ihrem Takt zurück.

Ich begann daraufhin Paare systematisch zu vergleichen: A→B versus B→A unter denselben
Bedingungen. Es zeigte sich ein Muster – wer gerade geschaltet hatte, erzeugte den stärkeren
Ausschlag im ersten Paketpaar danach; das Gegenüber reagierte etwas träger und glich erst mit
dem dritten oder vierten Ping sauber aus. In diesen kurzen Zyklen war der Offset vor dem
Retry-Ende schon messbar vorhanden; er verschwand jedoch kaum merklich nach dem
nächsten vollständigen RTT-Durchlauf.

Ich saß lange darüber und zeichnete Diagramme in mein Notizbuch: feine Linien für Offsets,
kleine Punkte für Bursts. Die Donau strömte daneben unbeeindruckt weiter, gleichmäßig wie ein
Referenzsignal ohne Jitter. Vielleicht ist das ja der Grund, warum ich hier draußen messe statt im



Labor – weil man hier besser sieht, wie Ruhe aussieht.

Später am Abend lief mein Skript automatisch durch alle Logs des Monats und generierte eine
Korrelationstabelle zwischen Clocksource-Wechseln und Burst-Mustern. Überraschend klar
zeigte sich: Kein einziger Burst ohne Switch-Ereignis; jeder Spike korrelierte mit einer neuen
ID-Sequenz im Kernelprotokoll. Fehlersuche abgeschlossen? Noch nicht ganz – aber immerhin
ein Schritt näher daran zu verstehen, wann unsere Zeitsysteme kurz aus dem Tritt geraten.

Das Display meines alten Loggers flackerte schwach auf; die Batterie hat’s nimmer lang fei. Ich
notierte noch schnell die letzte Seriennummer des Tageslaufes und schaute hinüber zur anderen
Seite des Flusses, wo Michaels Teststation stand – unsichtbar hinter Häuserzeilen vielleicht, aber
verbunden über einen stillen Strom von Paketen.

Wenn alles klappt, kann ich morgen früh den ersten vollständigen Vergleichslauf starten –
diesmal mit synchronisierten Clocksources auf beiden Seiten und aktivem ID-Tagging pro
Framepaar.

Die Nacht senkte sich leise über den Strom hinweg; irgendwo piepte eine Status-LED wie eine
ferne Boje im Dunkeln. Ich atmete tief durch und dachte: Pack ma’s morgen gscheid an – bevor
uns der nächste Switch wieder überrascht.

Den Switch-Moment fixieren

Ich hatte den Moment schon länger vermutet, aber erst heute konnte ich ihn sauber greifen: der
Sprung im rq->clock, genau zwischen ttwu_queue und activate_task. Das war wie ein leiser
Klick im Ohr, so ein „jetzt passt’s“-Gefühl. In den letzten Tagen hab ich über 120 Runs
durchlaufen lassen, brav getrennt in Idle und Last. Das Muster blieb stur gleich – die Kurve
knickt immer an derselben Stelle. Ein Retry-Burst, dann glättet sich das Ganze wie von selbst.

„Des is fei sauber dokumentiert,“ murmelte ich, mehr zu mir selbst als zu wem anders.

Die eBPF-Traces liefen parallel mit Correlation-IDs, damit ich jeden Wakeup eindeutig
zuordnen konnte. Ich hab gesehen, wie die µs‑Varianz beim Wakeup aufblitzte und gleich wieder
verschwand, sobald WF_MIGRATED griff. Dieser kleine Tanz der Tasks zwischen den CPUs
– hübsch anzusehen, aber für meinen Zweck eigentlich nur Rauschen. Der Offset blieb trotzdem
konstant bei etwa 1,111 Sekunden. Ich tippte erst auf NTP-Drift oder ktime_get‑Jitter, aber
nein: das war stabiler als erwartet.

Als ich die CPU‑Affinity gesetzt hab, wurde es richtig interessant. Migration fast null, Enqueue‑Δ
deutlich kleiner – und doch: der Offset rührte sich nicht. Da war mir klar, dass der Ursprung
tiefer liegt. Vielleicht direkt im do_clocksource_switch? Wenn der Wechsel des Zeitgebers
passiert, während gerade ein Scheduler-Ereignis läuft, könnte genau da dieser winzige Versatz
entstehen.

Ich setzte mich also hin und malte die Sequenz noch einmal auf Papier: enqueue → ttwu_queue
→ activate_task → first_tkread. Eigentlich sollte der Switch danach kommen, aber meine
Marker zeigten eindeutig etwas anderes. Zwischen den beiden ersten Punkten sprang die rq-
>clock-Zeit leicht nach vorne – kaum messbar ohne Mikrosekundenauflösung. Trotzdem reichte
es aus, um in jedem Run denselben kleinen Offset zu erzeugen. Faszinierend.

„Pack ma’s“, sagte ich leise und startete den nächsten Trace‑Lauf.



Diesmal fügte ich einen Marker hinzu: eine künstliche Lastspitze kurz vor dem vermuteten
Switch-Moment. Und siehe da – die Retry-Bursts wurden sichtbar wie winzige Herzschläge im
Graphen. Sie markierten exakt die Umstellung des Clocksources. Kein Zufall mehr, keine
Vermutung – es ließ sich nun belegen.

Das Schöne daran: Schon beim allerersten sauberen Read nach dem Switch war der Offset
vollständig messbar. Kein Einpendeln nötig, kein Gleitfenster über mehrere Sekunden – einfach
da, 1,1112 Sekunden Differenz zum Median aller vorherigen Reads. Und dieser Median blieb
erstaunlich ruhig stehen, als hätte er beschlossen: „Ich bleib jetzt hier.“

Ich zoomte in die Daten hinein und suchte nach Driftmustern in den Nanosekundenbereichen.
Nichts Auffälliges außer kleinsten Retries beim seqcount‑Lesen. Die Retries waren konsistent
mit einem internen Update des TSC‑Referenzzählers – also kein Bug im klassischen Sinn, eher
ein sauberer Mechanismus zur Wahrung der Konsistenz während des Wechsels.

In gewisser Weise erinnerte mich das an das Umschalten einer Funkfrequenz: kurz rauschen alle
Signale durcheinander, dann rastet alles wieder sauber ein – nur dass hier kein Ton entsteht,
sondern Zeit selbst neu justiert wird.

Die Stabilisierung des Medians auf 1,1112 Sekunden fühlte sich fast poetisch an. Eine Zahl mit
Rhythmus, als würde sie selbst takten wollen. Ich fragte mich kurz, ob dieser Wert wohl zufällig
so harmonisch wirkt oder ob irgendeine interne Synchronisation genau diesen Versatz erzwingt.
Vielleicht ist es wirklich nur das Ergebnis der Übergangsphase zwischen zwei Clockdomains;
vielleicht aber steckt darin ein subtiler Algorithmus zur Glättung von Zeitsprüngen.

Später am Abend testete ich noch eine Variante mit manuellem Trigger des
clocksource_switches unter kontrollierter NTP‑Abweichung. Wieder dieselbe Struktur: kurzer
Burst von Retries beim Lesen des seqcount-Felds und dann sofortige Beruhigung auf stabilem
Offset-Niveau. Das System schien sich selbst zu korrigieren – ganz ohne mein Zutun.

Ich lehnte mich zurück und atmete durch. Der Punkt war erreicht: Der Switch-Moment war
nicht nur sichtbar gemacht, sondern auch festgenagelt im Ablaufdiagramm meiner Messungen.
Es gibt keinen Zweifel mehr an seiner Position zwischen ttwu_queue und activate_task; kein
Mythos mehr vom späten Drift erst beim ersten tkread.

Vielleicht ist das ganze Rätsel gar keines mehr – nur eine Frage davon gewesen, genau genug
hinzusehen und die Zeitebene ernst zu nehmen wie einen physischen Raum.

Draußen dämmerte es langsam über dem Donautal; die Instrumente blinkten ruhig vor sich hin.
Ich speicherte den Lauf ab und notierte mir eine einzige Zeile für morgen: seqcount-Retries
gegen switch_irq_disable kreuzen. Dann schloss ich das Terminalfenster.

Es war still geworden im Labor — Zeit für den nächsten Schritt.

Donau-Nachmittag ohne Handy

Der Nachmittag legt sich weich über die Stadt, als hätte jemand die Sekunden gedehnt. Ich sitze
unten am Ufer, dort wo das Wasser knapp über den Steinen fließt und das Sonnenlicht in feinen
Schichten bricht. Kein Telefon, kein Ping, kein Messlauf – nur meine Uhr, die leise tickt, wie
eine Erinnerung daran, dass auch Stillstand Rhythmus haben kann.



Heute wollte ich eigentlich weiter an der VM messen. Der Versuch mit
intel_idle.max_cstate=1 hat mir gestern noch durch den Kopf gespukt: weniger Tiefe in
den Schlafzuständen, ruhigere Frequenzen in der Zeitleiste, aber der Offset blieb stur bei seinen
1,111 Sekunden. Diese Zahl klebt an mir wie ein Pollenrest auf der Haut – kaum sichtbar, doch
spürbar. Ich hab sie sogar im Traum gehört: ein kurzer Klick zwischen zwei Pulsschlägen.

Aber jetzt hier an der Donau – servus Stille – ist davon nichts mehr übrig als eine Ahnung. Die
Wellen zeichnen flüchtige Muster; jede Bewegung löscht die vorherige aus. Es fühlt sich an wie
ein natürlicher Trace‑Buffer: ständig überschrieben, nie endgültig gespeichert.

„Magst du wirklich nix messen heut?“ fragt mein eigenes Denken.

„Naa,“ sag ich leise zurück, „heut lass i die Zeit einfach laufen.“

Ich beobachte das Lichtspiel und denke an meine letzten Logs. Jedes Sample war präzise
markiert, jede Abweichung katalogisiert: Millisekunden-Cluster, C‑States und BPF‑Kurven.
Doch was ist das eigentlich wert ohne Gefühl für Dauer? Ich hab mich so sehr auf die
Differenzen konzentriert, dass ich fast vergessen hab, wie gleichmäßig ein Atemzug sein kann.

Ein Vogel landet neben mir auf dem Geländer. Er schaut kurz herüber, schräg und wachsam. Ich
stell mir vor, er wär ein kleiner Sensor – empfängt Winddaten über Federn und Flügelspannung.
Kein Taktgeber nötig; er weiß einfach, wann’s Zeit zum Weiterfliegen ist.

Die Donau trägt Holzstücke vorbei. Manche drehen sich schnell im Strudel, andere gleiten träge
dahin. Ich denke an meine zwei VMs von gestern – identische Setups und doch so verschieden
im Verhalten. Vielleicht brauch ich gar nicht tiefer in den Host graben oder neue Probes setzen;
vielleicht liegt der Unterschied schlicht in dem Moment zwischen zwei Messungen.

Ich atme langsam und zähle innerlich bis fünf: eins für den Strom des Wassers, zwei für die
Sonne auf meiner Haut, drei für das ferne Rauschen vom Verkehr jenseits des Hangs, vier für
den eigenen Puls und fünf für das Schweigen dazwischen. So misst sich Zeit anders – nicht in
Nanosekunden oder Offsets, sondern im Gefühl von Gleichgewicht.

„Pack ma’s wieder?“ höre ich mich irgendwann fragen.

„Gleich“, antwortet etwas in mir – „lass noch a bissl Stille nachlaufen.“

Ich lächle über diese innere Zwiesprache. Früher hätt ich sofort reagiert: Laptop aufklappen,
Skript starten, trace_agg.py basteln bis alles passt. Jetzt fühl ich mich fast befreit von diesem
Reflex. Das Projekt ist längst Teil meines Alltags geworden; selbst wenn ich nichts messe, läuft
es weiter in mir ab wie ein stilles Hintergrundprogramm.

Die Sonne senkt sich langsam Richtung Westen. Am anderen Ufer glitzert das Wasser kupfern
und warm. Ein paar Kinder werfen Steine hinein und zählen Sprünge – ihr Lachen schneidet
kurz durch den Dämmerklang des Abends. Für einen Moment spür ich so deutlich wie selten:
Jede Routine braucht ihre Pausenräume.

Ich fasse einen kleinen Kieselstein und halte ihn ins Licht. Glatt geschliffen von Jahren im
Flussbett – jede Kante weggespült durch Geduld. Vielleicht ist das mein nächster Schritt im
Projekt: Geduld messen statt nur Latenz.

Das Rauschen wird leiser hinter meinen Gedanken; selbst der Wind scheint kurz stehen zu
bleiben. Ich denk fei daran, dass morgen wieder Zahlen kommen werden – Logs voller Spuren
von Zeitverhalten und Spannungslagen –, aber heut darf alles unaufgelöst bleiben.



So endet dieser Donau-Nachmittag ohne Handy mit einem Gefühl von synchroner Ruhe
zwischen Mensch und Maschine; als würde beides denselben Takt atmen.

Langsam steh ich auf, klopf den Staub von der Hose und geh heimwärts – bereit für den
nächsten Lauf.

Abschluss an der Donau – das leise Blinken bleibt

Hundert Tage Messung. Ich sitze wieder am Ufer, dort, wo der Reifnebel das Wasser in ein
mattes Grau taucht und nur das schwache Blinken des Loggers einen Punkt von Beständigkeit
setzt. Der Takt ist derselbe geblieben – wie ein kleiner, technischer Herzschlag inmitten der
winterstillen Landschaft. Es ist eigenartig tröstlich, fei, dass er noch läuft, während alles andere
längst still geworden ist.

Der letzte Datensatz kam heute früh um 12:16 rein. Ich hab ihn mir angeschaut, fast so
aufmerksam wie am ersten Tag. Der Offset blieb stabil bei rund 1,111 Sekunden zwischen den
beiden Kernpunkten meiner Traces – ttwu_queue und activate_task –, als würde die Zeit selbst
kurz innehalten, bevor sie weitermacht. Damals hatte ich vermutet, es läge an einem
clocksource‑Wechsel, und ja: genau in den Momenten davor tauchen die seqcount‑Retries auf,
winzige Wiederholungen im Systemrhythmus. Ich konnte sie fast hören – ein feines Klicken, das
über die Stunden gleichmäßig verteilte.

„Passt scho’,“ murmel ich in den Wind hinein. „Der Logger weiß eh besser als ich,
wann’s genug is.“

Der Reif legt sich auf die Kabelisolierung wie Staub auf eine alte Maschine. Ich wische ihn nicht
weg; soll er bleiben als dünnes Zeichen der Zeit. Die Technik hat hier draußen gelernt zu atmen
zwischen Mensch und Fluss. Anfangs war jeder Interrupt ein kleines Rätsel, jede Abweichung
eine Störung meiner Ordnung. Jetzt seh ich sie als Teil dessen, was Lebendigkeit ausmacht –
auch in Bits und Takten.

Ich erinnere mich an Tag vierzig: da lief alles heiß, Kernelstatistiken flatterten wie Möwen
über’m Speichersee. Damals hab ich geflucht und trotzdem weitergemacht. Heute dagegen –
Ruhe. Kein hektisches Tippen mehr auf der Konsole, kein Nachziehen von Filtern für eBPF-
Events. Nur noch Beobachten.

„Pack ma’s langsam zam,“ sag ich leise zu mir selbst.

Die Donau zieht träge vorbei, trägt Spiegelungen von Wolken und von Dingen, die keine Namen
brauchen. Ich denke darüber nach, dass auch die Clocksource des Systems irgendwann
wechselt – nicht abrupt, sondern fließend –, genau wie der Fluss hier seine Richtung nie verliert
und doch ständig anders aussieht. Vielleicht steckt darin die eigentliche Erkenntnis dieser
hundert Tage: dass Stabilität nicht Stillstand bedeutet.

Ich klemme den Logger ab und lasse ihn für einen Moment in meiner Hand ruhen. Das kleine
Gehäuse ist kalt vom Nebel und doch voll von Wärme gespeicherter Datenströme. Drinnen
haben sich Zahlen zu Geschichten verwoben: Bursts aus seqcount‑Retries sind dort zu
Atemzügen geworden; Offsets zu Pausen; Switches zu Übergängen zwischen zwei Zuständen
von Weltwahrnehmung.



Der Gedanke gefällt mir: dass sich technische Präzision mit menschlicher Ruhe verbinden kann.
Ich erinnere mich an Nächte im Labor, wenn das Display grün schimmerte und der Kaffee längst
kalt war – damals suchte ich Fehlerbilder; jetzt suche ich Gleichgewicht.

Das Display zeigt noch immer denselben Rhythmus: blink – pause – blink – blink – pause –, ein
Muster ohne Hast. Es wirkt fast poetisch in seiner Konsequenz. Ich stelle mir vor, wie die
Elektronen im Inneren dieselbe Gelassenheit gelernt haben könnten wie ich am Ufer.

Ein leichter Wind kommt auf und schiebt den Nebel weiter donauabwärts. Mein Atem
kondensiert kurz vor dem Gesichtsfeld des Displays; für einen Moment spiegelt sich beides
ineinander – sichtbarer Dampf und digitales Blinken –, dann löst sich alles wieder auf.

„Hundert Tage“, denk ich laut. „Und trotzdem fühlt sich’s an wie erst der Anfang.“

Vielleicht ist das so mit Messungen: Man glaubt zu messen, aber eigentlich misst man nur sich
selbst gegen die Zeit. Der Logger bleibt nüchtern bei seinen Werten; ich hingegen lese darin
Stimmungen heraus wie früher Wetterzeichen im Wasserstand.

Die letzte Datei sichere ich noch lokal ab – Routinegriff –, dann zieh ich den Stecker ganz raus.
Kein Signalverlust diesmal; alles sauber beendet. Der Logger blinkt weiter im gleichen Takt,
gespeist vom kleinen Akku im Inneren. Er wird noch eine Weile durchhalten hier draußen
zwischen Frost und Morgensonne.

Langsam steigt über dem Fluss ein heller Streifen am Himmel auf; vielleicht kündigt er schon das
nächste Kapitel an – jenes nach dem Messen, wenn nur noch das leise Blinken bleibt.

Nachwort

Am letzten Tag stand ich wieder an der Donau, ohne Handy, nur der Atem sichtbar. Das Wasser
trug die Stadtgeräusche fort, und der Logger blinkte daheim weiter im Takt seiner 1,111
Sekunden. Ich weiß jetzt mehr über den Sprung – und vielleicht auch über mich. Die Donau
bleibt ruhig; der Kernel läuft; fei a guads Gefühl.werd dranbleiben. Nicht aus Ungeduld, sondern
weil Präzision manchmal einfach Geduld braucht.
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https://donau2space.de/tag-96-1211-200-wakeups-spaeter-pick_next_-ist-nicht-der-
hebel-aber-wake_up_process-trifft-den-offset-wie-ein-metronom/

28. Tag 97 — 16:15: Ich hänge mich an ttwu_do_wakeup: Der 1,111‑s‑Sprung hat
jetzt eine Stack‑Signatur (Logbuch) — https://donau2space.de/tag-97-1615-ich-
haenge-mich-an-ttwu_do_wakeup-der-1111-s-sprung-hat-jetzt-eine-stack-signatur/

29. Nebel, Logger und das kleine Rätsel (Privatlog) — https://donau2space.de/nebel-
logger-und-das-kleine-raetsel/

30. Tag 98 — 17:31: Weihnachtsklarheit über Passau: Eine Correlation‑ID zieht
TTWU auseinander (Host vs. VM) (Logbuch) — https://donau2space.de/tag-98-
1731-weihnachtsklarheit-ueber-passau-eine-correlation-id-zieht-ttwu-auseinander-
host-vs-vm/

31. Tag 99 — 14:36: Stefanitag-Klarheit über Passau: Last drauf, und
WF_MIGRATED wird plötzlich erklärbar (Logbuch) —
https://donau2space.de/tag-99-1436-stefanitag-klarheit-ueber-passau-last-drauf-und-
wf_migrated-wird-ploetzlich-erklaerbar/

32. Tag 100 — 17:44: Erster Tick im Blick: rq->clock + first_tkread macht
WF_MIGRATED messbar (Logbuch) — https://donau2space.de/tag-100-1744-
erster-tick-im-blick-rq-clock-first_tkread-macht-wf_migrated-messbar/

33. Tag 100: Donau, Logger und Dank (Privatlog) — https://donau2space.de/tag-100-
donau-logger-und-dank/

34. Tag 101 — 12:10: Enqueue erwischt: rq->clock kippt zwischen ttwu_queue und
activate_task (und ich kann’s jetzt pro ID belegen) (Logbuch) —
https://donau2space.de/tag-101-1210-enqueue-erwischt-rq-clock-kippt-zwischen-
ttwu_queue-und-activate_task-und-ich-kanns-jetzt-pro-id-belegen/

35. Tag 102 — 12:16: Reifnebel über der Donau, und ich erwische den Moment:
clocksource‑Switch + seqcount‑Retries passen zum 1,111‑s‑Offset (Logbuch)
— https://donau2space.de/tag-102-1216-reifnebel-ueber-der-donau-und-ich-
erwische-den-moment-clocksource-switch-seqcount-retries-passen-zum-1111-s-
offset/

36. Tag 103 — 15:11: Wolken über Passau, und ich logge endlich die Clocksource-
IDs pro Switch (Logbuch) — https://donau2space.de/tag-103-1511-wolken-ueber-
passau-und-ich-logge-endlich-die-clocksource-ids-pro-switch/

37. Donauabend ohne Handy, grüner Logger (Privatlog) —
https://donau2space.de/donauabend-ohne-handy-gruener-logger/

38. Tag 104 — 14:11: Bedecktes Passau, und ich klemme den Switch-Moment
zwischen Return und erstem sauberen Read fest (Logbuch) —



https://donau2space.de/tag-104-1411-bedecktes-passau-und-ich-klemme-den-
switch-moment-zwischen-return-und-erstem-sauberen-read-fest/
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